// CLI11: Version 2.4.1 // Originally designed by Henry Schreiner // https://github.com/CLIUtils/CLI11 // // This is a standalone header file generated by MakeSingleHeader.py in CLI11/scripts // from: v2.4.1 // // CLI11 2.4.1 Copyright (c) 2017-2024 University of Cincinnati, developed by Henry // Schreiner under NSF AWARD 1414736. All rights reserved. // // Redistribution and use in source and binary forms of CLI11, with or without // modification, are permitted provided that the following conditions are met: // // 1. Redistributions of source code must retain the above copyright notice, this // list of conditions and the following disclaimer. // 2. Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // 3. Neither the name of the copyright holder nor the names of its contributors // may be used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR // ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; // LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON // ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #pragma once // Standard combined includes: #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define CLI11_VERSION_MAJOR 2 #define CLI11_VERSION_MINOR 4 #define CLI11_VERSION_PATCH 1 #define CLI11_VERSION "2.4.1" // The following version macro is very similar to the one in pybind11 #if !(defined(_MSC_VER) && __cplusplus == 199711L) && !defined(__INTEL_COMPILER) #if __cplusplus >= 201402L #define CLI11_CPP14 #if __cplusplus >= 201703L #define CLI11_CPP17 #if __cplusplus > 201703L #define CLI11_CPP20 #endif #endif #endif #elif defined(_MSC_VER) && __cplusplus == 199711L // MSVC sets _MSVC_LANG rather than __cplusplus (supposedly until the standard is fully implemented) // Unless you use the /Zc:__cplusplus flag on Visual Studio 2017 15.7 Preview 3 or newer #if _MSVC_LANG >= 201402L #define CLI11_CPP14 #if _MSVC_LANG > 201402L && _MSC_VER >= 1910 #define CLI11_CPP17 #if _MSVC_LANG > 201703L && _MSC_VER >= 1910 #define CLI11_CPP20 #endif #endif #endif #endif #if defined(CLI11_CPP14) #define CLI11_DEPRECATED(reason) [[deprecated(reason)]] #elif defined(_MSC_VER) #define CLI11_DEPRECATED(reason) __declspec(deprecated(reason)) #else #define CLI11_DEPRECATED(reason) __attribute__((deprecated(reason))) #endif // GCC < 10 doesn't ignore this in unevaluated contexts #if !defined(CLI11_CPP17) || \ (defined(__GNUC__) && !defined(__llvm__) && !defined(__INTEL_COMPILER) && __GNUC__ < 10 && __GNUC__ > 4) #define CLI11_NODISCARD #else #define CLI11_NODISCARD [[nodiscard]] #endif /** detection of rtti */ #ifndef CLI11_USE_STATIC_RTTI #if(defined(_HAS_STATIC_RTTI) && _HAS_STATIC_RTTI) #define CLI11_USE_STATIC_RTTI 1 #elif defined(__cpp_rtti) #if(defined(_CPPRTTI) && _CPPRTTI == 0) #define CLI11_USE_STATIC_RTTI 1 #else #define CLI11_USE_STATIC_RTTI 0 #endif #elif(defined(__GCC_RTTI) && __GXX_RTTI) #define CLI11_USE_STATIC_RTTI 0 #else #define CLI11_USE_STATIC_RTTI 1 #endif #endif /** availability */ #if defined CLI11_CPP17 && defined __has_include && !defined CLI11_HAS_FILESYSTEM #if __has_include() // Filesystem cannot be used if targeting macOS < 10.15 #if defined __MAC_OS_X_VERSION_MIN_REQUIRED && __MAC_OS_X_VERSION_MIN_REQUIRED < 101500 #define CLI11_HAS_FILESYSTEM 0 #elif defined(__wasi__) // As of wasi-sdk-14, filesystem is not implemented #define CLI11_HAS_FILESYSTEM 0 #else #include #if defined __cpp_lib_filesystem && __cpp_lib_filesystem >= 201703 #if defined _GLIBCXX_RELEASE && _GLIBCXX_RELEASE >= 9 #define CLI11_HAS_FILESYSTEM 1 #elif defined(__GLIBCXX__) // if we are using gcc and Version <9 default to no filesystem #define CLI11_HAS_FILESYSTEM 0 #else #define CLI11_HAS_FILESYSTEM 1 #endif #else #define CLI11_HAS_FILESYSTEM 0 #endif #endif #endif #endif /** availability */ #if defined(__GNUC__) && !defined(__llvm__) && !defined(__INTEL_COMPILER) && __GNUC__ < 5 #define CLI11_HAS_CODECVT 0 #else #define CLI11_HAS_CODECVT 1 #include #endif /** disable deprecations */ #if defined(__GNUC__) // GCC or clang #define CLI11_DIAGNOSTIC_PUSH _Pragma("GCC diagnostic push") #define CLI11_DIAGNOSTIC_POP _Pragma("GCC diagnostic pop") #define CLI11_DIAGNOSTIC_IGNORE_DEPRECATED _Pragma("GCC diagnostic ignored \"-Wdeprecated-declarations\"") #elif defined(_MSC_VER) #define CLI11_DIAGNOSTIC_PUSH __pragma(warning(push)) #define CLI11_DIAGNOSTIC_POP __pragma(warning(pop)) #define CLI11_DIAGNOSTIC_IGNORE_DEPRECATED __pragma(warning(disable : 4996)) #else #define CLI11_DIAGNOSTIC_PUSH #define CLI11_DIAGNOSTIC_POP #define CLI11_DIAGNOSTIC_IGNORE_DEPRECATED #endif /** Inline macro **/ #ifdef CLI11_COMPILE #define CLI11_INLINE #else #define CLI11_INLINE inline #endif #if defined CLI11_HAS_FILESYSTEM && CLI11_HAS_FILESYSTEM > 0 #include // NOLINT(build/include) #else #include #include #endif #ifdef CLI11_CPP17 #include #endif // CLI11_CPP17 #if defined CLI11_HAS_FILESYSTEM && CLI11_HAS_FILESYSTEM > 0 #include #include // NOLINT(build/include) #endif // CLI11_HAS_FILESYSTEM #if defined(_WIN32) #if !(defined(_AMD64_) || defined(_X86_) || defined(_ARM_)) #if defined(__amd64__) || defined(__amd64) || defined(__x86_64__) || defined(__x86_64) || defined(_M_X64) || \ defined(_M_AMD64) #define _AMD64_ #elif defined(i386) || defined(__i386) || defined(__i386__) || defined(__i386__) || defined(_M_IX86) #define _X86_ #elif defined(__arm__) || defined(_M_ARM) || defined(_M_ARMT) #define _ARM_ #elif defined(__aarch64__) || defined(_M_ARM64) #define _ARM64_ #elif defined(_M_ARM64EC) #define _ARM64EC_ #endif #endif // first #ifndef NOMINMAX // if NOMINMAX is already defined we don't want to mess with that either way #define NOMINMAX #include #undef NOMINMAX #else #include #endif // second #include // third #include #include #endif namespace CLI { /// Convert a wide string to a narrow string. CLI11_INLINE std::string narrow(const std::wstring &str); CLI11_INLINE std::string narrow(const wchar_t *str); CLI11_INLINE std::string narrow(const wchar_t *str, std::size_t size); /// Convert a narrow string to a wide string. CLI11_INLINE std::wstring widen(const std::string &str); CLI11_INLINE std::wstring widen(const char *str); CLI11_INLINE std::wstring widen(const char *str, std::size_t size); #ifdef CLI11_CPP17 CLI11_INLINE std::string narrow(std::wstring_view str); CLI11_INLINE std::wstring widen(std::string_view str); #endif // CLI11_CPP17 #if defined CLI11_HAS_FILESYSTEM && CLI11_HAS_FILESYSTEM > 0 /// Convert a char-string to a native path correctly. CLI11_INLINE std::filesystem::path to_path(std::string_view str); #endif // CLI11_HAS_FILESYSTEM namespace detail { #if !CLI11_HAS_CODECVT /// Attempt to set one of the acceptable unicode locales for conversion CLI11_INLINE void set_unicode_locale() { static const std::array unicode_locales{{"C.UTF-8", "en_US.UTF-8", ".UTF-8"}}; for(const auto &locale_name : unicode_locales) { if(std::setlocale(LC_ALL, locale_name) != nullptr) { return; } } throw std::runtime_error("CLI::narrow: could not set locale to C.UTF-8"); } template struct scope_guard_t { F closure; explicit scope_guard_t(F closure_) : closure(closure_) {} ~scope_guard_t() { closure(); } }; template CLI11_NODISCARD CLI11_INLINE scope_guard_t scope_guard(F &&closure) { return scope_guard_t{std::forward(closure)}; } #endif // !CLI11_HAS_CODECVT CLI11_DIAGNOSTIC_PUSH CLI11_DIAGNOSTIC_IGNORE_DEPRECATED CLI11_INLINE std::string narrow_impl(const wchar_t *str, std::size_t str_size) { #if CLI11_HAS_CODECVT #ifdef _WIN32 return std::wstring_convert>().to_bytes(str, str + str_size); #else return std::wstring_convert>().to_bytes(str, str + str_size); #endif // _WIN32 #else // CLI11_HAS_CODECVT (void)str_size; std::mbstate_t state = std::mbstate_t(); const wchar_t *it = str; std::string old_locale = std::setlocale(LC_ALL, nullptr); auto sg = scope_guard([&] { std::setlocale(LC_ALL, old_locale.c_str()); }); set_unicode_locale(); std::size_t new_size = std::wcsrtombs(nullptr, &it, 0, &state); if(new_size == static_cast(-1)) { throw std::runtime_error("CLI::narrow: conversion error in std::wcsrtombs at offset " + std::to_string(it - str)); } std::string result(new_size, '\0'); std::wcsrtombs(const_cast(result.data()), &str, new_size, &state); return result; #endif // CLI11_HAS_CODECVT } CLI11_INLINE std::wstring widen_impl(const char *str, std::size_t str_size) { #if CLI11_HAS_CODECVT #ifdef _WIN32 return std::wstring_convert>().from_bytes(str, str + str_size); #else return std::wstring_convert>().from_bytes(str, str + str_size); #endif // _WIN32 #else // CLI11_HAS_CODECVT (void)str_size; std::mbstate_t state = std::mbstate_t(); const char *it = str; std::string old_locale = std::setlocale(LC_ALL, nullptr); auto sg = scope_guard([&] { std::setlocale(LC_ALL, old_locale.c_str()); }); set_unicode_locale(); std::size_t new_size = std::mbsrtowcs(nullptr, &it, 0, &state); if(new_size == static_cast(-1)) { throw std::runtime_error("CLI::widen: conversion error in std::mbsrtowcs at offset " + std::to_string(it - str)); } std::wstring result(new_size, L'\0'); std::mbsrtowcs(const_cast(result.data()), &str, new_size, &state); return result; #endif // CLI11_HAS_CODECVT } CLI11_DIAGNOSTIC_POP } // namespace detail CLI11_INLINE std::string narrow(const wchar_t *str, std::size_t str_size) { return detail::narrow_impl(str, str_size); } CLI11_INLINE std::string narrow(const std::wstring &str) { return detail::narrow_impl(str.data(), str.size()); } // Flawfinder: ignore CLI11_INLINE std::string narrow(const wchar_t *str) { return detail::narrow_impl(str, std::wcslen(str)); } CLI11_INLINE std::wstring widen(const char *str, std::size_t str_size) { return detail::widen_impl(str, str_size); } CLI11_INLINE std::wstring widen(const std::string &str) { return detail::widen_impl(str.data(), str.size()); } // Flawfinder: ignore CLI11_INLINE std::wstring widen(const char *str) { return detail::widen_impl(str, std::strlen(str)); } #ifdef CLI11_CPP17 CLI11_INLINE std::string narrow(std::wstring_view str) { return detail::narrow_impl(str.data(), str.size()); } CLI11_INLINE std::wstring widen(std::string_view str) { return detail::widen_impl(str.data(), str.size()); } #endif // CLI11_CPP17 #if defined CLI11_HAS_FILESYSTEM && CLI11_HAS_FILESYSTEM > 0 CLI11_INLINE std::filesystem::path to_path(std::string_view str) { return std::filesystem::path{ #ifdef _WIN32 widen(str) #else str #endif // _WIN32 }; } #endif // CLI11_HAS_FILESYSTEM namespace detail { #ifdef _WIN32 /// Decode and return UTF-8 argv from GetCommandLineW. CLI11_INLINE std::vector compute_win32_argv(); #endif } // namespace detail namespace detail { #ifdef _WIN32 CLI11_INLINE std::vector compute_win32_argv() { std::vector result; int argc = 0; auto deleter = [](wchar_t **ptr) { LocalFree(ptr); }; // NOLINTBEGIN(*-avoid-c-arrays) auto wargv = std::unique_ptr(CommandLineToArgvW(GetCommandLineW(), &argc), deleter); // NOLINTEND(*-avoid-c-arrays) if(wargv == nullptr) { throw std::runtime_error("CommandLineToArgvW failed with code " + std::to_string(GetLastError())); } result.reserve(static_cast(argc)); for(size_t i = 0; i < static_cast(argc); ++i) { result.push_back(narrow(wargv[i])); } return result; } #endif } // namespace detail /// Include the items in this namespace to get free conversion of enums to/from streams. /// (This is available inside CLI as well, so CLI11 will use this without a using statement). namespace enums { /// output streaming for enumerations template ::value>::type> std::ostream &operator<<(std::ostream &in, const T &item) { // make sure this is out of the detail namespace otherwise it won't be found when needed return in << static_cast::type>(item); } } // namespace enums /// Export to CLI namespace using enums::operator<<; namespace detail { /// a constant defining an expected max vector size defined to be a big number that could be multiplied by 4 and not /// produce overflow for some expected uses constexpr int expected_max_vector_size{1 << 29}; // Based on http://stackoverflow.com/questions/236129/split-a-string-in-c /// Split a string by a delim CLI11_INLINE std::vector split(const std::string &s, char delim); /// Simple function to join a string template std::string join(const T &v, std::string delim = ",") { std::ostringstream s; auto beg = std::begin(v); auto end = std::end(v); if(beg != end) s << *beg++; while(beg != end) { s << delim << *beg++; } return s.str(); } /// Simple function to join a string from processed elements template ::value>::type> std::string join(const T &v, Callable func, std::string delim = ",") { std::ostringstream s; auto beg = std::begin(v); auto end = std::end(v); auto loc = s.tellp(); while(beg != end) { auto nloc = s.tellp(); if(nloc > loc) { s << delim; loc = nloc; } s << func(*beg++); } return s.str(); } /// Join a string in reverse order template std::string rjoin(const T &v, std::string delim = ",") { std::ostringstream s; for(std::size_t start = 0; start < v.size(); start++) { if(start > 0) s << delim; s << v[v.size() - start - 1]; } return s.str(); } // Based roughly on http://stackoverflow.com/questions/25829143/c-trim-whitespace-from-a-string /// Trim whitespace from left of string CLI11_INLINE std::string <rim(std::string &str); /// Trim anything from left of string CLI11_INLINE std::string <rim(std::string &str, const std::string &filter); /// Trim whitespace from right of string CLI11_INLINE std::string &rtrim(std::string &str); /// Trim anything from right of string CLI11_INLINE std::string &rtrim(std::string &str, const std::string &filter); /// Trim whitespace from string inline std::string &trim(std::string &str) { return ltrim(rtrim(str)); } /// Trim anything from string inline std::string &trim(std::string &str, const std::string filter) { return ltrim(rtrim(str, filter), filter); } /// Make a copy of the string and then trim it inline std::string trim_copy(const std::string &str) { std::string s = str; return trim(s); } /// remove quotes at the front and back of a string either '"' or '\'' CLI11_INLINE std::string &remove_quotes(std::string &str); /// remove quotes from all elements of a string vector and process escaped components CLI11_INLINE void remove_quotes(std::vector &args); /// Add a leader to the beginning of all new lines (nothing is added /// at the start of the first line). `"; "` would be for ini files /// /// Can't use Regex, or this would be a subs. CLI11_INLINE std::string fix_newlines(const std::string &leader, std::string input); /// Make a copy of the string and then trim it, any filter string can be used (any char in string is filtered) inline std::string trim_copy(const std::string &str, const std::string &filter) { std::string s = str; return trim(s, filter); } /// Print a two part "help" string CLI11_INLINE std::ostream & format_help(std::ostream &out, std::string name, const std::string &description, std::size_t wid); /// Print subcommand aliases CLI11_INLINE std::ostream &format_aliases(std::ostream &out, const std::vector &aliases, std::size_t wid); /// Verify the first character of an option /// - is a trigger character, ! has special meaning and new lines would just be annoying to deal with template bool valid_first_char(T c) { return ((c != '-') && (static_cast(c) > 33)); // space and '!' not allowed } /// Verify following characters of an option template bool valid_later_char(T c) { // = and : are value separators, { has special meaning for option defaults, // and control codes other than tab would just be annoying to deal with in many places allowing space here has too // much potential for inadvertent entry errors and bugs return ((c != '=') && (c != ':') && (c != '{') && ((static_cast(c) > 32) || c == '\t')); } /// Verify an option/subcommand name CLI11_INLINE bool valid_name_string(const std::string &str); /// Verify an app name inline bool valid_alias_name_string(const std::string &str) { static const std::string badChars(std::string("\n") + '\0'); return (str.find_first_of(badChars) == std::string::npos); } /// check if a string is a container segment separator (empty or "%%") inline bool is_separator(const std::string &str) { static const std::string sep("%%"); return (str.empty() || str == sep); } /// Verify that str consists of letters only inline bool isalpha(const std::string &str) { return std::all_of(str.begin(), str.end(), [](char c) { return std::isalpha(c, std::locale()); }); } /// Return a lower case version of a string inline std::string to_lower(std::string str) { std::transform(std::begin(str), std::end(str), std::begin(str), [](const std::string::value_type &x) { return std::tolower(x, std::locale()); }); return str; } /// remove underscores from a string inline std::string remove_underscore(std::string str) { str.erase(std::remove(std::begin(str), std::end(str), '_'), std::end(str)); return str; } /// Find and replace a substring with another substring CLI11_INLINE std::string find_and_replace(std::string str, std::string from, std::string to); /// check if the flag definitions has possible false flags inline bool has_default_flag_values(const std::string &flags) { return (flags.find_first_of("{!") != std::string::npos); } CLI11_INLINE void remove_default_flag_values(std::string &flags); /// Check if a string is a member of a list of strings and optionally ignore case or ignore underscores CLI11_INLINE std::ptrdiff_t find_member(std::string name, const std::vector names, bool ignore_case = false, bool ignore_underscore = false); /// Find a trigger string and call a modify callable function that takes the current string and starting position of the /// trigger and returns the position in the string to search for the next trigger string template inline std::string find_and_modify(std::string str, std::string trigger, Callable modify) { std::size_t start_pos = 0; while((start_pos = str.find(trigger, start_pos)) != std::string::npos) { start_pos = modify(str, start_pos); } return str; } /// close a sequence of characters indicated by a closure character. Brackets allows sub sequences /// recognized bracket sequences include "'`[(<{ other closure characters are assumed to be literal strings CLI11_INLINE std::size_t close_sequence(const std::string &str, std::size_t start, char closure_char); /// Split a string '"one two" "three"' into 'one two', 'three' /// Quote characters can be ` ' or " or bracket characters [{(< with matching to the matching bracket CLI11_INLINE std::vector split_up(std::string str, char delimiter = '\0'); /// get the value of an environmental variable or empty string if empty CLI11_INLINE std::string get_environment_value(const std::string &env_name); /// This function detects an equal or colon followed by an escaped quote after an argument /// then modifies the string to replace the equality with a space. This is needed /// to allow the split up function to work properly and is intended to be used with the find_and_modify function /// the return value is the offset+1 which is required by the find_and_modify function. CLI11_INLINE std::size_t escape_detect(std::string &str, std::size_t offset); /// @brief detect if a string has escapable characters /// @param str the string to do the detection on /// @return true if the string has escapable characters CLI11_INLINE bool has_escapable_character(const std::string &str); /// @brief escape all escapable characters /// @param str the string to escape /// @return a string with the escapble characters escaped with '\' CLI11_INLINE std::string add_escaped_characters(const std::string &str); /// @brief replace the escaped characters with their equivalent CLI11_INLINE std::string remove_escaped_characters(const std::string &str); /// generate a string with all non printable characters escaped to hex codes CLI11_INLINE std::string binary_escape_string(const std::string &string_to_escape); CLI11_INLINE bool is_binary_escaped_string(const std::string &escaped_string); /// extract an escaped binary_string CLI11_INLINE std::string extract_binary_string(const std::string &escaped_string); /// process a quoted string, remove the quotes and if appropriate handle escaped characters CLI11_INLINE bool process_quoted_string(std::string &str, char string_char = '\"', char literal_char = '\''); } // namespace detail namespace detail { CLI11_INLINE std::vector split(const std::string &s, char delim) { std::vector elems; // Check to see if empty string, give consistent result if(s.empty()) { elems.emplace_back(); } else { std::stringstream ss; ss.str(s); std::string item; while(std::getline(ss, item, delim)) { elems.push_back(item); } } return elems; } CLI11_INLINE std::string <rim(std::string &str) { auto it = std::find_if(str.begin(), str.end(), [](char ch) { return !std::isspace(ch, std::locale()); }); str.erase(str.begin(), it); return str; } CLI11_INLINE std::string <rim(std::string &str, const std::string &filter) { auto it = std::find_if(str.begin(), str.end(), [&filter](char ch) { return filter.find(ch) == std::string::npos; }); str.erase(str.begin(), it); return str; } CLI11_INLINE std::string &rtrim(std::string &str) { auto it = std::find_if(str.rbegin(), str.rend(), [](char ch) { return !std::isspace(ch, std::locale()); }); str.erase(it.base(), str.end()); return str; } CLI11_INLINE std::string &rtrim(std::string &str, const std::string &filter) { auto it = std::find_if(str.rbegin(), str.rend(), [&filter](char ch) { return filter.find(ch) == std::string::npos; }); str.erase(it.base(), str.end()); return str; } CLI11_INLINE std::string &remove_quotes(std::string &str) { if(str.length() > 1 && (str.front() == '"' || str.front() == '\'' || str.front() == '`')) { if(str.front() == str.back()) { str.pop_back(); str.erase(str.begin(), str.begin() + 1); } } return str; } CLI11_INLINE std::string &remove_outer(std::string &str, char key) { if(str.length() > 1 && (str.front() == key)) { if(str.front() == str.back()) { str.pop_back(); str.erase(str.begin(), str.begin() + 1); } } return str; } CLI11_INLINE std::string fix_newlines(const std::string &leader, std::string input) { std::string::size_type n = 0; while(n != std::string::npos && n < input.size()) { n = input.find('\n', n); if(n != std::string::npos) { input = input.substr(0, n + 1) + leader + input.substr(n + 1); n += leader.size(); } } return input; } CLI11_INLINE std::ostream & format_help(std::ostream &out, std::string name, const std::string &description, std::size_t wid) { name = " " + name; out << std::setw(static_cast(wid)) << std::left << name; if(!description.empty()) { if(name.length() >= wid) out << "\n" << std::setw(static_cast(wid)) << ""; for(const char c : description) { out.put(c); if(c == '\n') { out << std::setw(static_cast(wid)) << ""; } } } out << "\n"; return out; } CLI11_INLINE std::ostream &format_aliases(std::ostream &out, const std::vector &aliases, std::size_t wid) { if(!aliases.empty()) { out << std::setw(static_cast(wid)) << " aliases: "; bool front = true; for(const auto &alias : aliases) { if(!front) { out << ", "; } else { front = false; } out << detail::fix_newlines(" ", alias); } out << "\n"; } return out; } CLI11_INLINE bool valid_name_string(const std::string &str) { if(str.empty() || !valid_first_char(str[0])) { return false; } auto e = str.end(); for(auto c = str.begin() + 1; c != e; ++c) if(!valid_later_char(*c)) return false; return true; } CLI11_INLINE std::string find_and_replace(std::string str, std::string from, std::string to) { std::size_t start_pos = 0; while((start_pos = str.find(from, start_pos)) != std::string::npos) { str.replace(start_pos, from.length(), to); start_pos += to.length(); } return str; } CLI11_INLINE void remove_default_flag_values(std::string &flags) { auto loc = flags.find_first_of('{', 2); while(loc != std::string::npos) { auto finish = flags.find_first_of("},", loc + 1); if((finish != std::string::npos) && (flags[finish] == '}')) { flags.erase(flags.begin() + static_cast(loc), flags.begin() + static_cast(finish) + 1); } loc = flags.find_first_of('{', loc + 1); } flags.erase(std::remove(flags.begin(), flags.end(), '!'), flags.end()); } CLI11_INLINE std::ptrdiff_t find_member(std::string name, const std::vector names, bool ignore_case, bool ignore_underscore) { auto it = std::end(names); if(ignore_case) { if(ignore_underscore) { name = detail::to_lower(detail::remove_underscore(name)); it = std::find_if(std::begin(names), std::end(names), [&name](std::string local_name) { return detail::to_lower(detail::remove_underscore(local_name)) == name; }); } else { name = detail::to_lower(name); it = std::find_if(std::begin(names), std::end(names), [&name](std::string local_name) { return detail::to_lower(local_name) == name; }); } } else if(ignore_underscore) { name = detail::remove_underscore(name); it = std::find_if(std::begin(names), std::end(names), [&name](std::string local_name) { return detail::remove_underscore(local_name) == name; }); } else { it = std::find(std::begin(names), std::end(names), name); } return (it != std::end(names)) ? (it - std::begin(names)) : (-1); } static const std::string escapedChars("\b\t\n\f\r\"\\"); static const std::string escapedCharsCode("btnfr\"\\"); static const std::string bracketChars{"\"'`[(<{"}; static const std::string matchBracketChars("\"'`])>}"); CLI11_INLINE bool has_escapable_character(const std::string &str) { return (str.find_first_of(escapedChars) != std::string::npos); } CLI11_INLINE std::string add_escaped_characters(const std::string &str) { std::string out; out.reserve(str.size() + 4); for(char s : str) { auto sloc = escapedChars.find_first_of(s); if(sloc != std::string::npos) { out.push_back('\\'); out.push_back(escapedCharsCode[sloc]); } else { out.push_back(s); } } return out; } CLI11_INLINE std::uint32_t hexConvert(char hc) { int hcode{0}; if(hc >= '0' && hc <= '9') { hcode = (hc - '0'); } else if(hc >= 'A' && hc <= 'F') { hcode = (hc - 'A' + 10); } else if(hc >= 'a' && hc <= 'f') { hcode = (hc - 'a' + 10); } else { hcode = -1; } return static_cast(hcode); } CLI11_INLINE char make_char(std::uint32_t code) { return static_cast(static_cast(code)); } CLI11_INLINE void append_codepoint(std::string &str, std::uint32_t code) { if(code < 0x80) { // ascii code equivalent str.push_back(static_cast(code)); } else if(code < 0x800) { // \u0080 to \u07FF // 110yyyyx 10xxxxxx; 0x3f == 0b0011'1111 str.push_back(make_char(0xC0 | code >> 6)); str.push_back(make_char(0x80 | (code & 0x3F))); } else if(code < 0x10000) { // U+0800...U+FFFF if(0xD800 <= code && code <= 0xDFFF) { throw std::invalid_argument("[0xD800, 0xDFFF] are not valid UTF-8."); } // 1110yyyy 10yxxxxx 10xxxxxx str.push_back(make_char(0xE0 | code >> 12)); str.push_back(make_char(0x80 | (code >> 6 & 0x3F))); str.push_back(make_char(0x80 | (code & 0x3F))); } else if(code < 0x110000) { // U+010000 ... U+10FFFF // 11110yyy 10yyxxxx 10xxxxxx 10xxxxxx str.push_back(make_char(0xF0 | code >> 18)); str.push_back(make_char(0x80 | (code >> 12 & 0x3F))); str.push_back(make_char(0x80 | (code >> 6 & 0x3F))); str.push_back(make_char(0x80 | (code & 0x3F))); } } CLI11_INLINE std::string remove_escaped_characters(const std::string &str) { std::string out; out.reserve(str.size()); for(auto loc = str.begin(); loc < str.end(); ++loc) { if(*loc == '\\') { if(str.end() - loc < 2) { throw std::invalid_argument("invalid escape sequence " + str); } auto ecloc = escapedCharsCode.find_first_of(*(loc + 1)); if(ecloc != std::string::npos) { out.push_back(escapedChars[ecloc]); ++loc; } else if(*(loc + 1) == 'u') { // must have 4 hex characters if(str.end() - loc < 6) { throw std::invalid_argument("unicode sequence must have 4 hex codes " + str); } std::uint32_t code{0}; std::uint32_t mplier{16 * 16 * 16}; for(int ii = 2; ii < 6; ++ii) { std::uint32_t res = hexConvert(*(loc + ii)); if(res > 0x0F) { throw std::invalid_argument("unicode sequence must have 4 hex codes " + str); } code += res * mplier; mplier = mplier / 16; } append_codepoint(out, code); loc += 5; } else if(*(loc + 1) == 'U') { // must have 8 hex characters if(str.end() - loc < 10) { throw std::invalid_argument("unicode sequence must have 8 hex codes " + str); } std::uint32_t code{0}; std::uint32_t mplier{16 * 16 * 16 * 16 * 16 * 16 * 16}; for(int ii = 2; ii < 10; ++ii) { std::uint32_t res = hexConvert(*(loc + ii)); if(res > 0x0F) { throw std::invalid_argument("unicode sequence must have 8 hex codes " + str); } code += res * mplier; mplier = mplier / 16; } append_codepoint(out, code); loc += 9; } else if(*(loc + 1) == '0') { out.push_back('\0'); ++loc; } else { throw std::invalid_argument(std::string("unrecognized escape sequence \\") + *(loc + 1) + " in " + str); } } else { out.push_back(*loc); } } return out; } CLI11_INLINE std::size_t close_string_quote(const std::string &str, std::size_t start, char closure_char) { std::size_t loc{0}; for(loc = start + 1; loc < str.size(); ++loc) { if(str[loc] == closure_char) { break; } if(str[loc] == '\\') { // skip the next character for escaped sequences ++loc; } } return loc; } CLI11_INLINE std::size_t close_literal_quote(const std::string &str, std::size_t start, char closure_char) { auto loc = str.find_first_of(closure_char, start + 1); return (loc != std::string::npos ? loc : str.size()); } CLI11_INLINE std::size_t close_sequence(const std::string &str, std::size_t start, char closure_char) { auto bracket_loc = matchBracketChars.find(closure_char); switch(bracket_loc) { case 0: return close_string_quote(str, start, closure_char); case 1: case 2: case std::string::npos: return close_literal_quote(str, start, closure_char); default: break; } std::string closures(1, closure_char); auto loc = start + 1; while(loc < str.size()) { if(str[loc] == closures.back()) { closures.pop_back(); if(closures.empty()) { return loc; } } bracket_loc = bracketChars.find(str[loc]); if(bracket_loc != std::string::npos) { switch(bracket_loc) { case 0: loc = close_string_quote(str, loc, str[loc]); break; case 1: case 2: loc = close_literal_quote(str, loc, str[loc]); break; default: closures.push_back(matchBracketChars[bracket_loc]); break; } } ++loc; } if(loc > str.size()) { loc = str.size(); } return loc; } CLI11_INLINE std::vector split_up(std::string str, char delimiter) { auto find_ws = [delimiter](char ch) { return (delimiter == '\0') ? std::isspace(ch, std::locale()) : (ch == delimiter); }; trim(str); std::vector output; while(!str.empty()) { if(bracketChars.find_first_of(str[0]) != std::string::npos) { auto bracketLoc = bracketChars.find_first_of(str[0]); auto end = close_sequence(str, 0, matchBracketChars[bracketLoc]); if(end >= str.size()) { output.push_back(std::move(str)); str.clear(); } else { output.push_back(str.substr(0, end + 1)); if(end + 2 < str.size()) { str = str.substr(end + 2); } else { str.clear(); } } } else { auto it = std::find_if(std::begin(str), std::end(str), find_ws); if(it != std::end(str)) { std::string value = std::string(str.begin(), it); output.push_back(value); str = std::string(it + 1, str.end()); } else { output.push_back(str); str.clear(); } } trim(str); } return output; } CLI11_INLINE std::size_t escape_detect(std::string &str, std::size_t offset) { auto next = str[offset + 1]; if((next == '\"') || (next == '\'') || (next == '`')) { auto astart = str.find_last_of("-/ \"\'`", offset - 1); if(astart != std::string::npos) { if(str[astart] == ((str[offset] == '=') ? '-' : '/')) str[offset] = ' '; // interpret this as a space so the split_up works properly } } return offset + 1; } CLI11_INLINE std::string binary_escape_string(const std::string &string_to_escape) { // s is our escaped output string std::string escaped_string{}; // loop through all characters for(char c : string_to_escape) { // check if a given character is printable // the cast is necessary to avoid undefined behaviour if(isprint(static_cast(c)) == 0) { std::stringstream stream; // if the character is not printable // we'll convert it to a hex string using a stringstream // note that since char is signed we have to cast it to unsigned first stream << std::hex << static_cast(static_cast(c)); std::string code = stream.str(); escaped_string += std::string("\\x") + (code.size() < 2 ? "0" : "") + code; } else { escaped_string.push_back(c); } } if(escaped_string != string_to_escape) { auto sqLoc = escaped_string.find('\''); while(sqLoc != std::string::npos) { escaped_string.replace(sqLoc, sqLoc + 1, "\\x27"); sqLoc = escaped_string.find('\''); } escaped_string.insert(0, "'B\"("); escaped_string.push_back(')'); escaped_string.push_back('"'); escaped_string.push_back('\''); } return escaped_string; } CLI11_INLINE bool is_binary_escaped_string(const std::string &escaped_string) { size_t ssize = escaped_string.size(); if(escaped_string.compare(0, 3, "B\"(") == 0 && escaped_string.compare(ssize - 2, 2, ")\"") == 0) { return true; } return (escaped_string.compare(0, 4, "'B\"(") == 0 && escaped_string.compare(ssize - 3, 3, ")\"'") == 0); } CLI11_INLINE std::string extract_binary_string(const std::string &escaped_string) { std::size_t start{0}; std::size_t tail{0}; size_t ssize = escaped_string.size(); if(escaped_string.compare(0, 3, "B\"(") == 0 && escaped_string.compare(ssize - 2, 2, ")\"") == 0) { start = 3; tail = 2; } else if(escaped_string.compare(0, 4, "'B\"(") == 0 && escaped_string.compare(ssize - 3, 3, ")\"'") == 0) { start = 4; tail = 3; } if(start == 0) { return escaped_string; } std::string outstring; outstring.reserve(ssize - start - tail); std::size_t loc = start; while(loc < ssize - tail) { // ssize-2 to skip )" at the end if(escaped_string[loc] == '\\' && (escaped_string[loc + 1] == 'x' || escaped_string[loc + 1] == 'X')) { auto c1 = escaped_string[loc + 2]; auto c2 = escaped_string[loc + 3]; std::uint32_t res1 = hexConvert(c1); std::uint32_t res2 = hexConvert(c2); if(res1 <= 0x0F && res2 <= 0x0F) { loc += 4; outstring.push_back(static_cast(res1 * 16 + res2)); continue; } } outstring.push_back(escaped_string[loc]); ++loc; } return outstring; } CLI11_INLINE void remove_quotes(std::vector &args) { for(auto &arg : args) { if(arg.front() == '\"' && arg.back() == '\"') { remove_quotes(arg); // only remove escaped for string arguments not literal strings arg = remove_escaped_characters(arg); } else { remove_quotes(arg); } } } CLI11_INLINE bool process_quoted_string(std::string &str, char string_char, char literal_char) { if(str.size() <= 1) { return false; } if(detail::is_binary_escaped_string(str)) { str = detail::extract_binary_string(str); return true; } if(str.front() == string_char && str.back() == string_char) { detail::remove_outer(str, string_char); if(str.find_first_of('\\') != std::string::npos) { str = detail::remove_escaped_characters(str); } return true; } if((str.front() == literal_char || str.front() == '`') && str.back() == str.front()) { detail::remove_outer(str, str.front()); return true; } return false; } std::string get_environment_value(const std::string &env_name) { char *buffer = nullptr; std::string ename_string; #ifdef _MSC_VER // Windows version std::size_t sz = 0; if(_dupenv_s(&buffer, &sz, env_name.c_str()) == 0 && buffer != nullptr) { ename_string = std::string(buffer); free(buffer); } #else // This also works on Windows, but gives a warning buffer = std::getenv(env_name.c_str()); if(buffer != nullptr) { ename_string = std::string(buffer); } #endif return ename_string; } } // namespace detail // Use one of these on all error classes. // These are temporary and are undef'd at the end of this file. #define CLI11_ERROR_DEF(parent, name) \ protected: \ name(std::string ename, std::string msg, int exit_code) : parent(std::move(ename), std::move(msg), exit_code) {} \ name(std::string ename, std::string msg, ExitCodes exit_code) \ : parent(std::move(ename), std::move(msg), exit_code) {} \ \ public: \ name(std::string msg, ExitCodes exit_code) : parent(#name, std::move(msg), exit_code) {} \ name(std::string msg, int exit_code) : parent(#name, std::move(msg), exit_code) {} // This is added after the one above if a class is used directly and builds its own message #define CLI11_ERROR_SIMPLE(name) \ explicit name(std::string msg) : name(#name, msg, ExitCodes::name) {} /// These codes are part of every error in CLI. They can be obtained from e using e.exit_code or as a quick shortcut, /// int values from e.get_error_code(). enum class ExitCodes { Success = 0, IncorrectConstruction = 100, BadNameString, OptionAlreadyAdded, FileError, ConversionError, ValidationError, RequiredError, RequiresError, ExcludesError, ExtrasError, ConfigError, InvalidError, HorribleError, OptionNotFound, ArgumentMismatch, BaseClass = 127 }; // Error definitions /// @defgroup error_group Errors /// @brief Errors thrown by CLI11 /// /// These are the errors that can be thrown. Some of them, like CLI::Success, are not really errors. /// @{ /// All errors derive from this one class Error : public std::runtime_error { int actual_exit_code; std::string error_name{"Error"}; public: CLI11_NODISCARD int get_exit_code() const { return actual_exit_code; } CLI11_NODISCARD std::string get_name() const { return error_name; } Error(std::string name, std::string msg, int exit_code = static_cast(ExitCodes::BaseClass)) : runtime_error(msg), actual_exit_code(exit_code), error_name(std::move(name)) {} Error(std::string name, std::string msg, ExitCodes exit_code) : Error(name, msg, static_cast(exit_code)) {} }; // Note: Using Error::Error constructors does not work on GCC 4.7 /// Construction errors (not in parsing) class ConstructionError : public Error { CLI11_ERROR_DEF(Error, ConstructionError) }; /// Thrown when an option is set to conflicting values (non-vector and multi args, for example) class IncorrectConstruction : public ConstructionError { CLI11_ERROR_DEF(ConstructionError, IncorrectConstruction) CLI11_ERROR_SIMPLE(IncorrectConstruction) static IncorrectConstruction PositionalFlag(std::string name) { return IncorrectConstruction(name + ": Flags cannot be positional"); } static IncorrectConstruction Set0Opt(std::string name) { return IncorrectConstruction(name + ": Cannot set 0 expected, use a flag instead"); } static IncorrectConstruction SetFlag(std::string name) { return IncorrectConstruction(name + ": Cannot set an expected number for flags"); } static IncorrectConstruction ChangeNotVector(std::string name) { return IncorrectConstruction(name + ": You can only change the expected arguments for vectors"); } static IncorrectConstruction AfterMultiOpt(std::string name) { return IncorrectConstruction( name + ": You can't change expected arguments after you've changed the multi option policy!"); } static IncorrectConstruction MissingOption(std::string name) { return IncorrectConstruction("Option " + name + " is not defined"); } static IncorrectConstruction MultiOptionPolicy(std::string name) { return IncorrectConstruction(name + ": multi_option_policy only works for flags and exact value options"); } }; /// Thrown on construction of a bad name class BadNameString : public ConstructionError { CLI11_ERROR_DEF(ConstructionError, BadNameString) CLI11_ERROR_SIMPLE(BadNameString) static BadNameString OneCharName(std::string name) { return BadNameString("Invalid one char name: " + name); } static BadNameString MissingDash(std::string name) { return BadNameString("Long names strings require 2 dashes " + name); } static BadNameString BadLongName(std::string name) { return BadNameString("Bad long name: " + name); } static BadNameString BadPositionalName(std::string name) { return BadNameString("Invalid positional Name: " + name); } static BadNameString DashesOnly(std::string name) { return BadNameString("Must have a name, not just dashes: " + name); } static BadNameString MultiPositionalNames(std::string name) { return BadNameString("Only one positional name allowed, remove: " + name); } }; /// Thrown when an option already exists class OptionAlreadyAdded : public ConstructionError { CLI11_ERROR_DEF(ConstructionError, OptionAlreadyAdded) explicit OptionAlreadyAdded(std::string name) : OptionAlreadyAdded(name + " is already added", ExitCodes::OptionAlreadyAdded) {} static OptionAlreadyAdded Requires(std::string name, std::string other) { return {name + " requires " + other, ExitCodes::OptionAlreadyAdded}; } static OptionAlreadyAdded Excludes(std::string name, std::string other) { return {name + " excludes " + other, ExitCodes::OptionAlreadyAdded}; } }; // Parsing errors /// Anything that can error in Parse class ParseError : public Error { CLI11_ERROR_DEF(Error, ParseError) }; // Not really "errors" /// This is a successful completion on parsing, supposed to exit class Success : public ParseError { CLI11_ERROR_DEF(ParseError, Success) Success() : Success("Successfully completed, should be caught and quit", ExitCodes::Success) {} }; /// -h or --help on command line class CallForHelp : public Success { CLI11_ERROR_DEF(Success, CallForHelp) CallForHelp() : CallForHelp("This should be caught in your main function, see examples", ExitCodes::Success) {} }; /// Usually something like --help-all on command line class CallForAllHelp : public Success { CLI11_ERROR_DEF(Success, CallForAllHelp) CallForAllHelp() : CallForAllHelp("This should be caught in your main function, see examples", ExitCodes::Success) {} }; /// -v or --version on command line class CallForVersion : public Success { CLI11_ERROR_DEF(Success, CallForVersion) CallForVersion() : CallForVersion("This should be caught in your main function, see examples", ExitCodes::Success) {} }; /// Does not output a diagnostic in CLI11_PARSE, but allows main() to return with a specific error code. class RuntimeError : public ParseError { CLI11_ERROR_DEF(ParseError, RuntimeError) explicit RuntimeError(int exit_code = 1) : RuntimeError("Runtime error", exit_code) {} }; /// Thrown when parsing an INI file and it is missing class FileError : public ParseError { CLI11_ERROR_DEF(ParseError, FileError) CLI11_ERROR_SIMPLE(FileError) static FileError Missing(std::string name) { return FileError(name + " was not readable (missing?)"); } }; /// Thrown when conversion call back fails, such as when an int fails to coerce to a string class ConversionError : public ParseError { CLI11_ERROR_DEF(ParseError, ConversionError) CLI11_ERROR_SIMPLE(ConversionError) ConversionError(std::string member, std::string name) : ConversionError("The value " + member + " is not an allowed value for " + name) {} ConversionError(std::string name, std::vector results) : ConversionError("Could not convert: " + name + " = " + detail::join(results)) {} static ConversionError TooManyInputsFlag(std::string name) { return ConversionError(name + ": too many inputs for a flag"); } static ConversionError TrueFalse(std::string name) { return ConversionError(name + ": Should be true/false or a number"); } }; /// Thrown when validation of results fails class ValidationError : public ParseError { CLI11_ERROR_DEF(ParseError, ValidationError) CLI11_ERROR_SIMPLE(ValidationError) explicit ValidationError(std::string name, std::string msg) : ValidationError(name + ": " + msg) {} }; /// Thrown when a required option is missing class RequiredError : public ParseError { CLI11_ERROR_DEF(ParseError, RequiredError) explicit RequiredError(std::string name) : RequiredError(name + " is required", ExitCodes::RequiredError) {} static RequiredError Subcommand(std::size_t min_subcom) { if(min_subcom == 1) { return RequiredError("A subcommand"); } return {"Requires at least " + std::to_string(min_subcom) + " subcommands", ExitCodes::RequiredError}; } static RequiredError Option(std::size_t min_option, std::size_t max_option, std::size_t used, const std::string &option_list) { if((min_option == 1) && (max_option == 1) && (used == 0)) return RequiredError("Exactly 1 option from [" + option_list + "]"); if((min_option == 1) && (max_option == 1) && (used > 1)) { return {"Exactly 1 option from [" + option_list + "] is required and " + std::to_string(used) + " were given", ExitCodes::RequiredError}; } if((min_option == 1) && (used == 0)) return RequiredError("At least 1 option from [" + option_list + "]"); if(used < min_option) { return {"Requires at least " + std::to_string(min_option) + " options used and only " + std::to_string(used) + "were given from [" + option_list + "]", ExitCodes::RequiredError}; } if(max_option == 1) return {"Requires at most 1 options be given from [" + option_list + "]", ExitCodes::RequiredError}; return {"Requires at most " + std::to_string(max_option) + " options be used and " + std::to_string(used) + "were given from [" + option_list + "]", ExitCodes::RequiredError}; } }; /// Thrown when the wrong number of arguments has been received class ArgumentMismatch : public ParseError { CLI11_ERROR_DEF(ParseError, ArgumentMismatch) CLI11_ERROR_SIMPLE(ArgumentMismatch) ArgumentMismatch(std::string name, int expected, std::size_t received) : ArgumentMismatch(expected > 0 ? ("Expected exactly " + std::to_string(expected) + " arguments to " + name + ", got " + std::to_string(received)) : ("Expected at least " + std::to_string(-expected) + " arguments to " + name + ", got " + std::to_string(received)), ExitCodes::ArgumentMismatch) {} static ArgumentMismatch AtLeast(std::string name, int num, std::size_t received) { return ArgumentMismatch(name + ": At least " + std::to_string(num) + " required but received " + std::to_string(received)); } static ArgumentMismatch AtMost(std::string name, int num, std::size_t received) { return ArgumentMismatch(name + ": At Most " + std::to_string(num) + " required but received " + std::to_string(received)); } static ArgumentMismatch TypedAtLeast(std::string name, int num, std::string type) { return ArgumentMismatch(name + ": " + std::to_string(num) + " required " + type + " missing"); } static ArgumentMismatch FlagOverride(std::string name) { return ArgumentMismatch(name + " was given a disallowed flag override"); } static ArgumentMismatch PartialType(std::string name, int num, std::string type) { return ArgumentMismatch(name + ": " + type + " only partially specified: " + std::to_string(num) + " required for each element"); } }; /// Thrown when a requires option is missing class RequiresError : public ParseError { CLI11_ERROR_DEF(ParseError, RequiresError) RequiresError(std::string curname, std::string subname) : RequiresError(curname + " requires " + subname, ExitCodes::RequiresError) {} }; /// Thrown when an excludes option is present class ExcludesError : public ParseError { CLI11_ERROR_DEF(ParseError, ExcludesError) ExcludesError(std::string curname, std::string subname) : ExcludesError(curname + " excludes " + subname, ExitCodes::ExcludesError) {} }; /// Thrown when too many positionals or options are found class ExtrasError : public ParseError { CLI11_ERROR_DEF(ParseError, ExtrasError) explicit ExtrasError(std::vector args) : ExtrasError((args.size() > 1 ? "The following arguments were not expected: " : "The following argument was not expected: ") + detail::rjoin(args, " "), ExitCodes::ExtrasError) {} ExtrasError(const std::string &name, std::vector args) : ExtrasError(name, (args.size() > 1 ? "The following arguments were not expected: " : "The following argument was not expected: ") + detail::rjoin(args, " "), ExitCodes::ExtrasError) {} }; /// Thrown when extra values are found in an INI file class ConfigError : public ParseError { CLI11_ERROR_DEF(ParseError, ConfigError) CLI11_ERROR_SIMPLE(ConfigError) static ConfigError Extras(std::string item) { return ConfigError("INI was not able to parse " + item); } static ConfigError NotConfigurable(std::string item) { return ConfigError(item + ": This option is not allowed in a configuration file"); } }; /// Thrown when validation fails before parsing class InvalidError : public ParseError { CLI11_ERROR_DEF(ParseError, InvalidError) explicit InvalidError(std::string name) : InvalidError(name + ": Too many positional arguments with unlimited expected args", ExitCodes::InvalidError) { } }; /// This is just a safety check to verify selection and parsing match - you should not ever see it /// Strings are directly added to this error, but again, it should never be seen. class HorribleError : public ParseError { CLI11_ERROR_DEF(ParseError, HorribleError) CLI11_ERROR_SIMPLE(HorribleError) }; // After parsing /// Thrown when counting a non-existent option class OptionNotFound : public Error { CLI11_ERROR_DEF(Error, OptionNotFound) explicit OptionNotFound(std::string name) : OptionNotFound(name + " not found", ExitCodes::OptionNotFound) {} }; #undef CLI11_ERROR_DEF #undef CLI11_ERROR_SIMPLE /// @} // Type tools // Utilities for type enabling namespace detail { // Based generally on https://rmf.io/cxx11/almost-static-if /// Simple empty scoped class enum class enabler {}; /// An instance to use in EnableIf constexpr enabler dummy = {}; } // namespace detail /// A copy of enable_if_t from C++14, compatible with C++11. /// /// We could check to see if C++14 is being used, but it does not hurt to redefine this /// (even Google does this: https://github.com/google/skia/blob/main/include/private/SkTLogic.h) /// It is not in the std namespace anyway, so no harm done. template using enable_if_t = typename std::enable_if::type; /// A copy of std::void_t from C++17 (helper for C++11 and C++14) template struct make_void { using type = void; }; /// A copy of std::void_t from C++17 - same reasoning as enable_if_t, it does not hurt to redefine template using void_t = typename make_void::type; /// A copy of std::conditional_t from C++14 - same reasoning as enable_if_t, it does not hurt to redefine template using conditional_t = typename std::conditional::type; /// Check to see if something is bool (fail check by default) template struct is_bool : std::false_type {}; /// Check to see if something is bool (true if actually a bool) template <> struct is_bool : std::true_type {}; /// Check to see if something is a shared pointer template struct is_shared_ptr : std::false_type {}; /// Check to see if something is a shared pointer (True if really a shared pointer) template struct is_shared_ptr> : std::true_type {}; /// Check to see if something is a shared pointer (True if really a shared pointer) template struct is_shared_ptr> : std::true_type {}; /// Check to see if something is copyable pointer template struct is_copyable_ptr { static bool const value = is_shared_ptr::value || std::is_pointer::value; }; /// This can be specialized to override the type deduction for IsMember. template struct IsMemberType { using type = T; }; /// The main custom type needed here is const char * should be a string. template <> struct IsMemberType { using type = std::string; }; namespace detail { // These are utilities for IsMember and other transforming objects /// Handy helper to access the element_type generically. This is not part of is_copyable_ptr because it requires that /// pointer_traits be valid. /// not a pointer template struct element_type { using type = T; }; template struct element_type::value>::type> { using type = typename std::pointer_traits::element_type; }; /// Combination of the element type and value type - remove pointer (including smart pointers) and get the value_type of /// the container template struct element_value_type { using type = typename element_type::type::value_type; }; /// Adaptor for set-like structure: This just wraps a normal container in a few utilities that do almost nothing. template struct pair_adaptor : std::false_type { using value_type = typename T::value_type; using first_type = typename std::remove_const::type; using second_type = typename std::remove_const::type; /// Get the first value (really just the underlying value) template static auto first(Q &&pair_value) -> decltype(std::forward(pair_value)) { return std::forward(pair_value); } /// Get the second value (really just the underlying value) template static auto second(Q &&pair_value) -> decltype(std::forward(pair_value)) { return std::forward(pair_value); } }; /// Adaptor for map-like structure (true version, must have key_type and mapped_type). /// This wraps a mapped container in a few utilities access it in a general way. template struct pair_adaptor< T, conditional_t, void>> : std::true_type { using value_type = typename T::value_type; using first_type = typename std::remove_const::type; using second_type = typename std::remove_const::type; /// Get the first value (really just the underlying value) template static auto first(Q &&pair_value) -> decltype(std::get<0>(std::forward(pair_value))) { return std::get<0>(std::forward(pair_value)); } /// Get the second value (really just the underlying value) template static auto second(Q &&pair_value) -> decltype(std::get<1>(std::forward(pair_value))) { return std::get<1>(std::forward(pair_value)); } }; // Warning is suppressed due to "bug" in gcc<5.0 and gcc 7.0 with c++17 enabled that generates a Wnarrowing warning // in the unevaluated context even if the function that was using this wasn't used. The standard says narrowing in // brace initialization shouldn't be allowed but for backwards compatibility gcc allows it in some contexts. It is a // little fuzzy what happens in template constructs and I think that was something GCC took a little while to work out. // But regardless some versions of gcc generate a warning when they shouldn't from the following code so that should be // suppressed #ifdef __GNUC__ #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wnarrowing" #endif // check for constructibility from a specific type and copy assignable used in the parse detection template class is_direct_constructible { template static auto test(int, std::true_type) -> decltype( // NVCC warns about narrowing conversions here #ifdef __CUDACC__ #ifdef __NVCC_DIAG_PRAGMA_SUPPORT__ #pragma nv_diag_suppress 2361 #else #pragma diag_suppress 2361 #endif #endif TT{std::declval()} #ifdef __CUDACC__ #ifdef __NVCC_DIAG_PRAGMA_SUPPORT__ #pragma nv_diag_default 2361 #else #pragma diag_default 2361 #endif #endif , std::is_move_assignable()); template static auto test(int, std::false_type) -> std::false_type; template static auto test(...) -> std::false_type; public: static constexpr bool value = decltype(test(0, typename std::is_constructible::type()))::value; }; #ifdef __GNUC__ #pragma GCC diagnostic pop #endif // Check for output streamability // Based on https://stackoverflow.com/questions/22758291/how-can-i-detect-if-a-type-can-be-streamed-to-an-stdostream template class is_ostreamable { template static auto test(int) -> decltype(std::declval() << std::declval(), std::true_type()); template static auto test(...) -> std::false_type; public: static constexpr bool value = decltype(test(0))::value; }; /// Check for input streamability template class is_istreamable { template static auto test(int) -> decltype(std::declval() >> std::declval(), std::true_type()); template static auto test(...) -> std::false_type; public: static constexpr bool value = decltype(test(0))::value; }; /// Check for complex template class is_complex { template static auto test(int) -> decltype(std::declval().real(), std::declval().imag(), std::true_type()); template static auto test(...) -> std::false_type; public: static constexpr bool value = decltype(test(0))::value; }; /// Templated operation to get a value from a stream template ::value, detail::enabler> = detail::dummy> bool from_stream(const std::string &istring, T &obj) { std::istringstream is; is.str(istring); is >> obj; return !is.fail() && !is.rdbuf()->in_avail(); } template ::value, detail::enabler> = detail::dummy> bool from_stream(const std::string & /*istring*/, T & /*obj*/) { return false; } // check to see if an object is a mutable container (fail by default) template struct is_mutable_container : std::false_type {}; /// type trait to test if a type is a mutable container meaning it has a value_type, it has an iterator, a clear, and /// end methods and an insert function. And for our purposes we exclude std::string and types that can be constructed /// from a std::string template struct is_mutable_container< T, conditional_t().end()), decltype(std::declval().clear()), decltype(std::declval().insert(std::declval().end())>(), std::declval()))>, void>> : public conditional_t::value || std::is_constructible::value, std::false_type, std::true_type> {}; // check to see if an object is a mutable container (fail by default) template struct is_readable_container : std::false_type {}; /// type trait to test if a type is a container meaning it has a value_type, it has an iterator, a clear, and an end /// methods and an insert function. And for our purposes we exclude std::string and types that can be constructed from /// a std::string template struct is_readable_container< T, conditional_t().end()), decltype(std::declval().begin())>, void>> : public std::true_type {}; // check to see if an object is a wrapper (fail by default) template struct is_wrapper : std::false_type {}; // check if an object is a wrapper (it has a value_type defined) template struct is_wrapper, void>> : public std::true_type {}; // Check for tuple like types, as in classes with a tuple_size type trait template class is_tuple_like { template // static auto test(int) // -> decltype(std::conditional<(std::tuple_size::value > 0), std::true_type, std::false_type>::type()); static auto test(int) -> decltype(std::tuple_size::type>::value, std::true_type{}); template static auto test(...) -> std::false_type; public: static constexpr bool value = decltype(test(0))::value; }; /// Convert an object to a string (directly forward if this can become a string) template ::value, detail::enabler> = detail::dummy> auto to_string(T &&value) -> decltype(std::forward(value)) { return std::forward(value); } /// Construct a string from the object template ::value && !std::is_convertible::value, detail::enabler> = detail::dummy> std::string to_string(const T &value) { return std::string(value); // NOLINT(google-readability-casting) } /// Convert an object to a string (streaming must be supported for that type) template ::value && !std::is_constructible::value && is_ostreamable::value, detail::enabler> = detail::dummy> std::string to_string(T &&value) { std::stringstream stream; stream << value; return stream.str(); } /// If conversion is not supported, return an empty string (streaming is not supported for that type) template ::value && !is_ostreamable::value && !is_readable_container::type>::value, detail::enabler> = detail::dummy> std::string to_string(T &&) { return {}; } /// convert a readable container to a string template ::value && !is_ostreamable::value && is_readable_container::value, detail::enabler> = detail::dummy> std::string to_string(T &&variable) { auto cval = variable.begin(); auto end = variable.end(); if(cval == end) { return {"{}"}; } std::vector defaults; while(cval != end) { defaults.emplace_back(CLI::detail::to_string(*cval)); ++cval; } return {"[" + detail::join(defaults) + "]"}; } /// special template overload template ::value, detail::enabler> = detail::dummy> auto checked_to_string(T &&value) -> decltype(to_string(std::forward(value))) { return to_string(std::forward(value)); } /// special template overload template ::value, detail::enabler> = detail::dummy> std::string checked_to_string(T &&) { return std::string{}; } /// get a string as a convertible value for arithmetic types template ::value, detail::enabler> = detail::dummy> std::string value_string(const T &value) { return std::to_string(value); } /// get a string as a convertible value for enumerations template ::value, detail::enabler> = detail::dummy> std::string value_string(const T &value) { return std::to_string(static_cast::type>(value)); } /// for other types just use the regular to_string function template ::value && !std::is_arithmetic::value, detail::enabler> = detail::dummy> auto value_string(const T &value) -> decltype(to_string(value)) { return to_string(value); } /// template to get the underlying value type if it exists or use a default template struct wrapped_type { using type = def; }; /// Type size for regular object types that do not look like a tuple template struct wrapped_type::value>::type> { using type = typename T::value_type; }; /// This will only trigger for actual void type template struct type_count_base { static const int value{0}; }; /// Type size for regular object types that do not look like a tuple template struct type_count_base::value && !is_mutable_container::value && !std::is_void::value>::type> { static constexpr int value{1}; }; /// the base tuple size template struct type_count_base::value && !is_mutable_container::value>::type> { static constexpr int value{std::tuple_size::value}; }; /// Type count base for containers is the type_count_base of the individual element template struct type_count_base::value>::type> { static constexpr int value{type_count_base::value}; }; /// Set of overloads to get the type size of an object /// forward declare the subtype_count structure template struct subtype_count; /// forward declare the subtype_count_min structure template struct subtype_count_min; /// This will only trigger for actual void type template struct type_count { static const int value{0}; }; /// Type size for regular object types that do not look like a tuple template struct type_count::value && !is_tuple_like::value && !is_complex::value && !std::is_void::value>::type> { static constexpr int value{1}; }; /// Type size for complex since it sometimes looks like a wrapper template struct type_count::value>::type> { static constexpr int value{2}; }; /// Type size of types that are wrappers,except complex and tuples(which can also be wrappers sometimes) template struct type_count::value>::type> { static constexpr int value{subtype_count::value}; }; /// Type size of types that are wrappers,except containers complex and tuples(which can also be wrappers sometimes) template struct type_count::value && !is_complex::value && !is_tuple_like::value && !is_mutable_container::value>::type> { static constexpr int value{type_count::value}; }; /// 0 if the index > tuple size template constexpr typename std::enable_if::value, int>::type tuple_type_size() { return 0; } /// Recursively generate the tuple type name template constexpr typename std::enable_if < I::value, int>::type tuple_type_size() { return subtype_count::type>::value + tuple_type_size(); } /// Get the type size of the sum of type sizes for all the individual tuple types template struct type_count::value>::type> { static constexpr int value{tuple_type_size()}; }; /// definition of subtype count template struct subtype_count { static constexpr int value{is_mutable_container::value ? expected_max_vector_size : type_count::value}; }; /// This will only trigger for actual void type template struct type_count_min { static const int value{0}; }; /// Type size for regular object types that do not look like a tuple template struct type_count_min< T, typename std::enable_if::value && !is_tuple_like::value && !is_wrapper::value && !is_complex::value && !std::is_void::value>::type> { static constexpr int value{type_count::value}; }; /// Type size for complex since it sometimes looks like a wrapper template struct type_count_min::value>::type> { static constexpr int value{1}; }; /// Type size min of types that are wrappers,except complex and tuples(which can also be wrappers sometimes) template struct type_count_min< T, typename std::enable_if::value && !is_complex::value && !is_tuple_like::value>::type> { static constexpr int value{subtype_count_min::value}; }; /// 0 if the index > tuple size template constexpr typename std::enable_if::value, int>::type tuple_type_size_min() { return 0; } /// Recursively generate the tuple type name template constexpr typename std::enable_if < I::value, int>::type tuple_type_size_min() { return subtype_count_min::type>::value + tuple_type_size_min(); } /// Get the type size of the sum of type sizes for all the individual tuple types template struct type_count_min::value>::type> { static constexpr int value{tuple_type_size_min()}; }; /// definition of subtype count template struct subtype_count_min { static constexpr int value{is_mutable_container::value ? ((type_count::value < expected_max_vector_size) ? type_count::value : 0) : type_count_min::value}; }; /// This will only trigger for actual void type template struct expected_count { static const int value{0}; }; /// For most types the number of expected items is 1 template struct expected_count::value && !is_wrapper::value && !std::is_void::value>::type> { static constexpr int value{1}; }; /// number of expected items in a vector template struct expected_count::value>::type> { static constexpr int value{expected_max_vector_size}; }; /// number of expected items in a vector template struct expected_count::value && is_wrapper::value>::type> { static constexpr int value{expected_count::value}; }; // Enumeration of the different supported categorizations of objects enum class object_category : int { char_value = 1, integral_value = 2, unsigned_integral = 4, enumeration = 6, boolean_value = 8, floating_point = 10, number_constructible = 12, double_constructible = 14, integer_constructible = 16, // string like types string_assignable = 23, string_constructible = 24, wstring_assignable = 25, wstring_constructible = 26, other = 45, // special wrapper or container types wrapper_value = 50, complex_number = 60, tuple_value = 70, container_value = 80, }; /// Set of overloads to classify an object according to type /// some type that is not otherwise recognized template struct classify_object { static constexpr object_category value{object_category::other}; }; /// Signed integers template struct classify_object< T, typename std::enable_if::value && !std::is_same::value && std::is_signed::value && !is_bool::value && !std::is_enum::value>::type> { static constexpr object_category value{object_category::integral_value}; }; /// Unsigned integers template struct classify_object::value && std::is_unsigned::value && !std::is_same::value && !is_bool::value>::type> { static constexpr object_category value{object_category::unsigned_integral}; }; /// single character values template struct classify_object::value && !std::is_enum::value>::type> { static constexpr object_category value{object_category::char_value}; }; /// Boolean values template struct classify_object::value>::type> { static constexpr object_category value{object_category::boolean_value}; }; /// Floats template struct classify_object::value>::type> { static constexpr object_category value{object_category::floating_point}; }; #if defined _MSC_VER // in MSVC wstring should take precedence if available this isn't as useful on other compilers due to the broader use of // utf-8 encoding #define WIDE_STRING_CHECK \ !std::is_assignable::value && !std::is_constructible::value #define STRING_CHECK true #else #define WIDE_STRING_CHECK true #define STRING_CHECK !std::is_assignable::value && !std::is_constructible::value #endif /// String and similar direct assignment template struct classify_object< T, typename std::enable_if::value && !std::is_integral::value && WIDE_STRING_CHECK && std::is_assignable::value>::type> { static constexpr object_category value{object_category::string_assignable}; }; /// String and similar constructible and copy assignment template struct classify_object< T, typename std::enable_if::value && !std::is_integral::value && !std::is_assignable::value && (type_count::value == 1) && WIDE_STRING_CHECK && std::is_constructible::value>::type> { static constexpr object_category value{object_category::string_constructible}; }; /// Wide strings template struct classify_object::value && !std::is_integral::value && STRING_CHECK && std::is_assignable::value>::type> { static constexpr object_category value{object_category::wstring_assignable}; }; template struct classify_object< T, typename std::enable_if::value && !std::is_integral::value && !std::is_assignable::value && (type_count::value == 1) && STRING_CHECK && std::is_constructible::value>::type> { static constexpr object_category value{object_category::wstring_constructible}; }; /// Enumerations template struct classify_object::value>::type> { static constexpr object_category value{object_category::enumeration}; }; template struct classify_object::value>::type> { static constexpr object_category value{object_category::complex_number}; }; /// Handy helper to contain a bunch of checks that rule out many common types (integers, string like, floating point, /// vectors, and enumerations template struct uncommon_type { using type = typename std::conditional< !std::is_floating_point::value && !std::is_integral::value && !std::is_assignable::value && !std::is_constructible::value && !std::is_assignable::value && !std::is_constructible::value && !is_complex::value && !is_mutable_container::value && !std::is_enum::value, std::true_type, std::false_type>::type; static constexpr bool value = type::value; }; /// wrapper type template struct classify_object::value && is_wrapper::value && !is_tuple_like::value && uncommon_type::value)>::type> { static constexpr object_category value{object_category::wrapper_value}; }; /// Assignable from double or int template struct classify_object::value && type_count::value == 1 && !is_wrapper::value && is_direct_constructible::value && is_direct_constructible::value>::type> { static constexpr object_category value{object_category::number_constructible}; }; /// Assignable from int template struct classify_object::value && type_count::value == 1 && !is_wrapper::value && !is_direct_constructible::value && is_direct_constructible::value>::type> { static constexpr object_category value{object_category::integer_constructible}; }; /// Assignable from double template struct classify_object::value && type_count::value == 1 && !is_wrapper::value && is_direct_constructible::value && !is_direct_constructible::value>::type> { static constexpr object_category value{object_category::double_constructible}; }; /// Tuple type template struct classify_object< T, typename std::enable_if::value && ((type_count::value >= 2 && !is_wrapper::value) || (uncommon_type::value && !is_direct_constructible::value && !is_direct_constructible::value) || (uncommon_type::value && type_count::value >= 2))>::type> { static constexpr object_category value{object_category::tuple_value}; // the condition on this class requires it be like a tuple, but on some compilers (like Xcode) tuples can be // constructed from just the first element so tuples of can be constructed from a string, which // could lead to issues so there are two variants of the condition, the first isolates things with a type size >=2 // mainly to get tuples on Xcode with the exception of wrappers, the second is the main one and just separating out // those cases that are caught by other object classifications }; /// container type template struct classify_object::value>::type> { static constexpr object_category value{object_category::container_value}; }; // Type name print /// Was going to be based on /// http://stackoverflow.com/questions/1055452/c-get-name-of-type-in-template /// But this is cleaner and works better in this case template ::value == object_category::char_value, detail::enabler> = detail::dummy> constexpr const char *type_name() { return "CHAR"; } template ::value == object_category::integral_value || classify_object::value == object_category::integer_constructible, detail::enabler> = detail::dummy> constexpr const char *type_name() { return "INT"; } template ::value == object_category::unsigned_integral, detail::enabler> = detail::dummy> constexpr const char *type_name() { return "UINT"; } template ::value == object_category::floating_point || classify_object::value == object_category::number_constructible || classify_object::value == object_category::double_constructible, detail::enabler> = detail::dummy> constexpr const char *type_name() { return "FLOAT"; } /// Print name for enumeration types template ::value == object_category::enumeration, detail::enabler> = detail::dummy> constexpr const char *type_name() { return "ENUM"; } /// Print name for enumeration types template ::value == object_category::boolean_value, detail::enabler> = detail::dummy> constexpr const char *type_name() { return "BOOLEAN"; } /// Print name for enumeration types template ::value == object_category::complex_number, detail::enabler> = detail::dummy> constexpr const char *type_name() { return "COMPLEX"; } /// Print for all other types template ::value >= object_category::string_assignable && classify_object::value <= object_category::other, detail::enabler> = detail::dummy> constexpr const char *type_name() { return "TEXT"; } /// typename for tuple value template ::value == object_category::tuple_value && type_count_base::value >= 2, detail::enabler> = detail::dummy> std::string type_name(); // forward declaration /// Generate type name for a wrapper or container value template ::value == object_category::container_value || classify_object::value == object_category::wrapper_value, detail::enabler> = detail::dummy> std::string type_name(); // forward declaration /// Print name for single element tuple types template ::value == object_category::tuple_value && type_count_base::value == 1, detail::enabler> = detail::dummy> inline std::string type_name() { return type_name::type>::type>(); } /// Empty string if the index > tuple size template inline typename std::enable_if::value, std::string>::type tuple_name() { return std::string{}; } /// Recursively generate the tuple type name template inline typename std::enable_if<(I < type_count_base::value), std::string>::type tuple_name() { auto str = std::string{type_name::type>::type>()} + ',' + tuple_name(); if(str.back() == ',') str.pop_back(); return str; } /// Print type name for tuples with 2 or more elements template ::value == object_category::tuple_value && type_count_base::value >= 2, detail::enabler>> inline std::string type_name() { auto tname = std::string(1, '[') + tuple_name(); tname.push_back(']'); return tname; } /// get the type name for a type that has a value_type member template ::value == object_category::container_value || classify_object::value == object_category::wrapper_value, detail::enabler>> inline std::string type_name() { return type_name(); } // Lexical cast /// Convert to an unsigned integral template ::value, detail::enabler> = detail::dummy> bool integral_conversion(const std::string &input, T &output) noexcept { if(input.empty() || input.front() == '-') { return false; } char *val{nullptr}; errno = 0; std::uint64_t output_ll = std::strtoull(input.c_str(), &val, 0); if(errno == ERANGE) { return false; } output = static_cast(output_ll); if(val == (input.c_str() + input.size()) && static_cast(output) == output_ll) { return true; } val = nullptr; std::int64_t output_sll = std::strtoll(input.c_str(), &val, 0); if(val == (input.c_str() + input.size())) { output = (output_sll < 0) ? static_cast(0) : static_cast(output_sll); return (static_cast(output) == output_sll); } // remove separators if(input.find_first_of("_'") != std::string::npos) { std::string nstring = input; nstring.erase(std::remove(nstring.begin(), nstring.end(), '_'), nstring.end()); nstring.erase(std::remove(nstring.begin(), nstring.end(), '\''), nstring.end()); return integral_conversion(nstring, output); } if(input.compare(0, 2, "0o") == 0) { val = nullptr; errno = 0; output_ll = std::strtoull(input.c_str() + 2, &val, 8); if(errno == ERANGE) { return false; } output = static_cast(output_ll); return (val == (input.c_str() + input.size()) && static_cast(output) == output_ll); } if(input.compare(0, 2, "0b") == 0) { val = nullptr; errno = 0; output_ll = std::strtoull(input.c_str() + 2, &val, 2); if(errno == ERANGE) { return false; } output = static_cast(output_ll); return (val == (input.c_str() + input.size()) && static_cast(output) == output_ll); } return false; } /// Convert to a signed integral template ::value, detail::enabler> = detail::dummy> bool integral_conversion(const std::string &input, T &output) noexcept { if(input.empty()) { return false; } char *val = nullptr; errno = 0; std::int64_t output_ll = std::strtoll(input.c_str(), &val, 0); if(errno == ERANGE) { return false; } output = static_cast(output_ll); if(val == (input.c_str() + input.size()) && static_cast(output) == output_ll) { return true; } if(input == "true") { // this is to deal with a few oddities with flags and wrapper int types output = static_cast(1); return true; } // remove separators if(input.find_first_of("_'") != std::string::npos) { std::string nstring = input; nstring.erase(std::remove(nstring.begin(), nstring.end(), '_'), nstring.end()); nstring.erase(std::remove(nstring.begin(), nstring.end(), '\''), nstring.end()); return integral_conversion(nstring, output); } if(input.compare(0, 2, "0o") == 0) { val = nullptr; errno = 0; output_ll = std::strtoll(input.c_str() + 2, &val, 8); if(errno == ERANGE) { return false; } output = static_cast(output_ll); return (val == (input.c_str() + input.size()) && static_cast(output) == output_ll); } if(input.compare(0, 2, "0b") == 0) { val = nullptr; errno = 0; output_ll = std::strtoll(input.c_str() + 2, &val, 2); if(errno == ERANGE) { return false; } output = static_cast(output_ll); return (val == (input.c_str() + input.size()) && static_cast(output) == output_ll); } return false; } /// Convert a flag into an integer value typically binary flags sets errno to nonzero if conversion failed inline std::int64_t to_flag_value(std::string val) noexcept { static const std::string trueString("true"); static const std::string falseString("false"); if(val == trueString) { return 1; } if(val == falseString) { return -1; } val = detail::to_lower(val); std::int64_t ret = 0; if(val.size() == 1) { if(val[0] >= '1' && val[0] <= '9') { return (static_cast(val[0]) - '0'); } switch(val[0]) { case '0': case 'f': case 'n': case '-': ret = -1; break; case 't': case 'y': case '+': ret = 1; break; default: errno = EINVAL; return -1; } return ret; } if(val == trueString || val == "on" || val == "yes" || val == "enable") { ret = 1; } else if(val == falseString || val == "off" || val == "no" || val == "disable") { ret = -1; } else { char *loc_ptr{nullptr}; ret = std::strtoll(val.c_str(), &loc_ptr, 0); if(loc_ptr != (val.c_str() + val.size()) && errno == 0) { errno = EINVAL; } } return ret; } /// Integer conversion template ::value == object_category::integral_value || classify_object::value == object_category::unsigned_integral, detail::enabler> = detail::dummy> bool lexical_cast(const std::string &input, T &output) { return integral_conversion(input, output); } /// char values template ::value == object_category::char_value, detail::enabler> = detail::dummy> bool lexical_cast(const std::string &input, T &output) { if(input.size() == 1) { output = static_cast(input[0]); return true; } return integral_conversion(input, output); } /// Boolean values template ::value == object_category::boolean_value, detail::enabler> = detail::dummy> bool lexical_cast(const std::string &input, T &output) { errno = 0; auto out = to_flag_value(input); if(errno == 0) { output = (out > 0); } else if(errno == ERANGE) { output = (input[0] != '-'); } else { return false; } return true; } /// Floats template ::value == object_category::floating_point, detail::enabler> = detail::dummy> bool lexical_cast(const std::string &input, T &output) { if(input.empty()) { return false; } char *val = nullptr; auto output_ld = std::strtold(input.c_str(), &val); output = static_cast(output_ld); if(val == (input.c_str() + input.size())) { return true; } // remove separators if(input.find_first_of("_'") != std::string::npos) { std::string nstring = input; nstring.erase(std::remove(nstring.begin(), nstring.end(), '_'), nstring.end()); nstring.erase(std::remove(nstring.begin(), nstring.end(), '\''), nstring.end()); return lexical_cast(nstring, output); } return false; } /// complex template ::value == object_category::complex_number, detail::enabler> = detail::dummy> bool lexical_cast(const std::string &input, T &output) { using XC = typename wrapped_type::type; XC x{0.0}, y{0.0}; auto str1 = input; bool worked = false; auto nloc = str1.find_last_of("+-"); if(nloc != std::string::npos && nloc > 0) { worked = lexical_cast(str1.substr(0, nloc), x); str1 = str1.substr(nloc); if(str1.back() == 'i' || str1.back() == 'j') str1.pop_back(); worked = worked && lexical_cast(str1, y); } else { if(str1.back() == 'i' || str1.back() == 'j') { str1.pop_back(); worked = lexical_cast(str1, y); x = XC{0}; } else { worked = lexical_cast(str1, x); y = XC{0}; } } if(worked) { output = T{x, y}; return worked; } return from_stream(input, output); } /// String and similar direct assignment template ::value == object_category::string_assignable, detail::enabler> = detail::dummy> bool lexical_cast(const std::string &input, T &output) { output = input; return true; } /// String and similar constructible and copy assignment template < typename T, enable_if_t::value == object_category::string_constructible, detail::enabler> = detail::dummy> bool lexical_cast(const std::string &input, T &output) { output = T(input); return true; } /// Wide strings template < typename T, enable_if_t::value == object_category::wstring_assignable, detail::enabler> = detail::dummy> bool lexical_cast(const std::string &input, T &output) { output = widen(input); return true; } template < typename T, enable_if_t::value == object_category::wstring_constructible, detail::enabler> = detail::dummy> bool lexical_cast(const std::string &input, T &output) { output = T{widen(input)}; return true; } /// Enumerations template ::value == object_category::enumeration, detail::enabler> = detail::dummy> bool lexical_cast(const std::string &input, T &output) { typename std::underlying_type::type val; if(!integral_conversion(input, val)) { return false; } output = static_cast(val); return true; } /// wrapper types template ::value == object_category::wrapper_value && std::is_assignable::value, detail::enabler> = detail::dummy> bool lexical_cast(const std::string &input, T &output) { typename T::value_type val; if(lexical_cast(input, val)) { output = val; return true; } return from_stream(input, output); } template ::value == object_category::wrapper_value && !std::is_assignable::value && std::is_assignable::value, detail::enabler> = detail::dummy> bool lexical_cast(const std::string &input, T &output) { typename T::value_type val; if(lexical_cast(input, val)) { output = T{val}; return true; } return from_stream(input, output); } /// Assignable from double or int template < typename T, enable_if_t::value == object_category::number_constructible, detail::enabler> = detail::dummy> bool lexical_cast(const std::string &input, T &output) { int val = 0; if(integral_conversion(input, val)) { output = T(val); return true; } double dval = 0.0; if(lexical_cast(input, dval)) { output = T{dval}; return true; } return from_stream(input, output); } /// Assignable from int template < typename T, enable_if_t::value == object_category::integer_constructible, detail::enabler> = detail::dummy> bool lexical_cast(const std::string &input, T &output) { int val = 0; if(integral_conversion(input, val)) { output = T(val); return true; } return from_stream(input, output); } /// Assignable from double template < typename T, enable_if_t::value == object_category::double_constructible, detail::enabler> = detail::dummy> bool lexical_cast(const std::string &input, T &output) { double val = 0.0; if(lexical_cast(input, val)) { output = T{val}; return true; } return from_stream(input, output); } /// Non-string convertible from an int template ::value == object_category::other && std::is_assignable::value, detail::enabler> = detail::dummy> bool lexical_cast(const std::string &input, T &output) { int val = 0; if(integral_conversion(input, val)) { #ifdef _MSC_VER #pragma warning(push) #pragma warning(disable : 4800) #endif // with Atomic this could produce a warning due to the conversion but if atomic gets here it is an old style // so will most likely still work output = val; #ifdef _MSC_VER #pragma warning(pop) #endif return true; } // LCOV_EXCL_START // This version of cast is only used for odd cases in an older compilers the fail over // from_stream is tested elsewhere an not relevant for coverage here return from_stream(input, output); // LCOV_EXCL_STOP } /// Non-string parsable by a stream template ::value == object_category::other && !std::is_assignable::value, detail::enabler> = detail::dummy> bool lexical_cast(const std::string &input, T &output) { static_assert(is_istreamable::value, "option object type must have a lexical cast overload or streaming input operator(>>) defined, if it " "is convertible from another type use the add_option(...) with XC being the known type"); return from_stream(input, output); } /// Assign a value through lexical cast operations /// Strings can be empty so we need to do a little different template ::value && (classify_object::value == object_category::string_assignable || classify_object::value == object_category::string_constructible || classify_object::value == object_category::wstring_assignable || classify_object::value == object_category::wstring_constructible), detail::enabler> = detail::dummy> bool lexical_assign(const std::string &input, AssignTo &output) { return lexical_cast(input, output); } /// Assign a value through lexical cast operations template ::value && std::is_assignable::value && classify_object::value != object_category::string_assignable && classify_object::value != object_category::string_constructible && classify_object::value != object_category::wstring_assignable && classify_object::value != object_category::wstring_constructible, detail::enabler> = detail::dummy> bool lexical_assign(const std::string &input, AssignTo &output) { if(input.empty()) { output = AssignTo{}; return true; } return lexical_cast(input, output); } /// Assign a value through lexical cast operations template ::value && !std::is_assignable::value && classify_object::value == object_category::wrapper_value, detail::enabler> = detail::dummy> bool lexical_assign(const std::string &input, AssignTo &output) { if(input.empty()) { typename AssignTo::value_type emptyVal{}; output = emptyVal; return true; } return lexical_cast(input, output); } /// Assign a value through lexical cast operations for int compatible values /// mainly for atomic operations on some compilers template ::value && !std::is_assignable::value && classify_object::value != object_category::wrapper_value && std::is_assignable::value, detail::enabler> = detail::dummy> bool lexical_assign(const std::string &input, AssignTo &output) { if(input.empty()) { output = 0; return true; } int val{0}; if(lexical_cast(input, val)) { #if defined(__clang__) /* on some older clang compilers */ #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wsign-conversion" #endif output = val; #if defined(__clang__) #pragma clang diagnostic pop #endif return true; } return false; } /// Assign a value converted from a string in lexical cast to the output value directly template ::value && std::is_assignable::value, detail::enabler> = detail::dummy> bool lexical_assign(const std::string &input, AssignTo &output) { ConvertTo val{}; bool parse_result = (!input.empty()) ? lexical_cast(input, val) : true; if(parse_result) { output = val; } return parse_result; } /// Assign a value from a lexical cast through constructing a value and move assigning it template < typename AssignTo, typename ConvertTo, enable_if_t::value && !std::is_assignable::value && std::is_move_assignable::value, detail::enabler> = detail::dummy> bool lexical_assign(const std::string &input, AssignTo &output) { ConvertTo val{}; bool parse_result = input.empty() ? true : lexical_cast(input, val); if(parse_result) { output = AssignTo(val); // use () form of constructor to allow some implicit conversions } return parse_result; } /// primary lexical conversion operation, 1 string to 1 type of some kind template ::value <= object_category::other && classify_object::value <= object_category::wrapper_value, detail::enabler> = detail::dummy> bool lexical_conversion(const std::vector &strings, AssignTo &output) { return lexical_assign(strings[0], output); } /// Lexical conversion if there is only one element but the conversion type is for two, then call a two element /// constructor template ::value <= 2) && expected_count::value == 1 && is_tuple_like::value && type_count_base::value == 2, detail::enabler> = detail::dummy> bool lexical_conversion(const std::vector &strings, AssignTo &output) { // the remove const is to handle pair types coming from a container using FirstType = typename std::remove_const::type>::type; using SecondType = typename std::tuple_element<1, ConvertTo>::type; FirstType v1; SecondType v2; bool retval = lexical_assign(strings[0], v1); retval = retval && lexical_assign((strings.size() > 1) ? strings[1] : std::string{}, v2); if(retval) { output = AssignTo{v1, v2}; } return retval; } /// Lexical conversion of a container types of single elements template ::value && is_mutable_container::value && type_count::value == 1, detail::enabler> = detail::dummy> bool lexical_conversion(const std::vector &strings, AssignTo &output) { output.erase(output.begin(), output.end()); if(strings.empty()) { return true; } if(strings.size() == 1 && strings[0] == "{}") { return true; } bool skip_remaining = false; if(strings.size() == 2 && strings[0] == "{}" && is_separator(strings[1])) { skip_remaining = true; } for(const auto &elem : strings) { typename AssignTo::value_type out; bool retval = lexical_assign(elem, out); if(!retval) { return false; } output.insert(output.end(), std::move(out)); if(skip_remaining) { break; } } return (!output.empty()); } /// Lexical conversion for complex types template ::value, detail::enabler> = detail::dummy> bool lexical_conversion(const std::vector &strings, AssignTo &output) { if(strings.size() >= 2 && !strings[1].empty()) { using XC2 = typename wrapped_type::type; XC2 x{0.0}, y{0.0}; auto str1 = strings[1]; if(str1.back() == 'i' || str1.back() == 'j') { str1.pop_back(); } auto worked = lexical_cast(strings[0], x) && lexical_cast(str1, y); if(worked) { output = ConvertTo{x, y}; } return worked; } return lexical_assign(strings[0], output); } /// Conversion to a vector type using a particular single type as the conversion type template ::value && (expected_count::value == 1) && (type_count::value == 1), detail::enabler> = detail::dummy> bool lexical_conversion(const std::vector &strings, AssignTo &output) { bool retval = true; output.clear(); output.reserve(strings.size()); for(const auto &elem : strings) { output.emplace_back(); retval = retval && lexical_assign(elem, output.back()); } return (!output.empty()) && retval; } // forward declaration /// Lexical conversion of a container types with conversion type of two elements template ::value && is_mutable_container::value && type_count_base::value == 2, detail::enabler> = detail::dummy> bool lexical_conversion(std::vector strings, AssignTo &output); /// Lexical conversion of a vector types with type_size >2 forward declaration template ::value && is_mutable_container::value && type_count_base::value != 2 && ((type_count::value > 2) || (type_count::value > type_count_base::value)), detail::enabler> = detail::dummy> bool lexical_conversion(const std::vector &strings, AssignTo &output); /// Conversion for tuples template ::value && is_tuple_like::value && (type_count_base::value != type_count::value || type_count::value > 2), detail::enabler> = detail::dummy> bool lexical_conversion(const std::vector &strings, AssignTo &output); // forward declaration /// Conversion for operations where the assigned type is some class but the conversion is a mutable container or large /// tuple template ::value && !is_mutable_container::value && classify_object::value != object_category::wrapper_value && (is_mutable_container::value || type_count::value > 2), detail::enabler> = detail::dummy> bool lexical_conversion(const std::vector &strings, AssignTo &output) { if(strings.size() > 1 || (!strings.empty() && !(strings.front().empty()))) { ConvertTo val; auto retval = lexical_conversion(strings, val); output = AssignTo{val}; return retval; } output = AssignTo{}; return true; } /// function template for converting tuples if the static Index is greater than the tuple size template inline typename std::enable_if<(I >= type_count_base::value), bool>::type tuple_conversion(const std::vector &, AssignTo &) { return true; } /// Conversion of a tuple element where the type size ==1 and not a mutable container template inline typename std::enable_if::value && type_count::value == 1, bool>::type tuple_type_conversion(std::vector &strings, AssignTo &output) { auto retval = lexical_assign(strings[0], output); strings.erase(strings.begin()); return retval; } /// Conversion of a tuple element where the type size !=1 but the size is fixed and not a mutable container template inline typename std::enable_if::value && (type_count::value > 1) && type_count::value == type_count_min::value, bool>::type tuple_type_conversion(std::vector &strings, AssignTo &output) { auto retval = lexical_conversion(strings, output); strings.erase(strings.begin(), strings.begin() + type_count::value); return retval; } /// Conversion of a tuple element where the type is a mutable container or a type with different min and max type sizes template inline typename std::enable_if::value || type_count::value != type_count_min::value, bool>::type tuple_type_conversion(std::vector &strings, AssignTo &output) { std::size_t index{subtype_count_min::value}; const std::size_t mx_count{subtype_count::value}; const std::size_t mx{(std::min)(mx_count, strings.size() - 1)}; while(index < mx) { if(is_separator(strings[index])) { break; } ++index; } bool retval = lexical_conversion( std::vector(strings.begin(), strings.begin() + static_cast(index)), output); if(strings.size() > index) { strings.erase(strings.begin(), strings.begin() + static_cast(index) + 1); } else { strings.clear(); } return retval; } /// Tuple conversion operation template inline typename std::enable_if<(I < type_count_base::value), bool>::type tuple_conversion(std::vector strings, AssignTo &output) { bool retval = true; using ConvertToElement = typename std:: conditional::value, typename std::tuple_element::type, ConvertTo>::type; if(!strings.empty()) { retval = retval && tuple_type_conversion::type, ConvertToElement>( strings, std::get(output)); } retval = retval && tuple_conversion(std::move(strings), output); return retval; } /// Lexical conversion of a container types with tuple elements of size 2 template ::value && is_mutable_container::value && type_count_base::value == 2, detail::enabler>> bool lexical_conversion(std::vector strings, AssignTo &output) { output.clear(); while(!strings.empty()) { typename std::remove_const::type>::type v1; typename std::tuple_element<1, typename ConvertTo::value_type>::type v2; bool retval = tuple_type_conversion(strings, v1); if(!strings.empty()) { retval = retval && tuple_type_conversion(strings, v2); } if(retval) { output.insert(output.end(), typename AssignTo::value_type{v1, v2}); } else { return false; } } return (!output.empty()); } /// lexical conversion of tuples with type count>2 or tuples of types of some element with a type size>=2 template ::value && is_tuple_like::value && (type_count_base::value != type_count::value || type_count::value > 2), detail::enabler>> bool lexical_conversion(const std::vector &strings, AssignTo &output) { static_assert( !is_tuple_like::value || type_count_base::value == type_count_base::value, "if the conversion type is defined as a tuple it must be the same size as the type you are converting to"); return tuple_conversion(strings, output); } /// Lexical conversion of a vector types for everything but tuples of two elements and types of size 1 template ::value && is_mutable_container::value && type_count_base::value != 2 && ((type_count::value > 2) || (type_count::value > type_count_base::value)), detail::enabler>> bool lexical_conversion(const std::vector &strings, AssignTo &output) { bool retval = true; output.clear(); std::vector temp; std::size_t ii{0}; std::size_t icount{0}; std::size_t xcm{type_count::value}; auto ii_max = strings.size(); while(ii < ii_max) { temp.push_back(strings[ii]); ++ii; ++icount; if(icount == xcm || is_separator(temp.back()) || ii == ii_max) { if(static_cast(xcm) > type_count_min::value && is_separator(temp.back())) { temp.pop_back(); } typename AssignTo::value_type temp_out; retval = retval && lexical_conversion(temp, temp_out); temp.clear(); if(!retval) { return false; } output.insert(output.end(), std::move(temp_out)); icount = 0; } } return retval; } /// conversion for wrapper types template ::value == object_category::wrapper_value && std::is_assignable::value, detail::enabler> = detail::dummy> bool lexical_conversion(const std::vector &strings, AssignTo &output) { if(strings.empty() || strings.front().empty()) { output = ConvertTo{}; return true; } typename ConvertTo::value_type val; if(lexical_conversion(strings, val)) { output = ConvertTo{val}; return true; } return false; } /// conversion for wrapper types template ::value == object_category::wrapper_value && !std::is_assignable::value, detail::enabler> = detail::dummy> bool lexical_conversion(const std::vector &strings, AssignTo &output) { using ConvertType = typename ConvertTo::value_type; if(strings.empty() || strings.front().empty()) { output = ConvertType{}; return true; } ConvertType val; if(lexical_conversion(strings, val)) { output = val; return true; } return false; } /// Sum a vector of strings inline std::string sum_string_vector(const std::vector &values) { double val{0.0}; bool fail{false}; std::string output; for(const auto &arg : values) { double tv{0.0}; auto comp = lexical_cast(arg, tv); if(!comp) { errno = 0; auto fv = detail::to_flag_value(arg); fail = (errno != 0); if(fail) { break; } tv = static_cast(fv); } val += tv; } if(fail) { for(const auto &arg : values) { output.append(arg); } } else { std::ostringstream out; out.precision(16); out << val; output = out.str(); } return output; } } // namespace detail namespace detail { // Returns false if not a short option. Otherwise, sets opt name and rest and returns true CLI11_INLINE bool split_short(const std::string ¤t, std::string &name, std::string &rest); // Returns false if not a long option. Otherwise, sets opt name and other side of = and returns true CLI11_INLINE bool split_long(const std::string ¤t, std::string &name, std::string &value); // Returns false if not a windows style option. Otherwise, sets opt name and value and returns true CLI11_INLINE bool split_windows_style(const std::string ¤t, std::string &name, std::string &value); // Splits a string into multiple long and short names CLI11_INLINE std::vector split_names(std::string current); /// extract default flag values either {def} or starting with a ! CLI11_INLINE std::vector> get_default_flag_values(const std::string &str); /// Get a vector of short names, one of long names, and a single name CLI11_INLINE std::tuple, std::vector, std::string> get_names(const std::vector &input); } // namespace detail namespace detail { CLI11_INLINE bool split_short(const std::string ¤t, std::string &name, std::string &rest) { if(current.size() > 1 && current[0] == '-' && valid_first_char(current[1])) { name = current.substr(1, 1); rest = current.substr(2); return true; } return false; } CLI11_INLINE bool split_long(const std::string ¤t, std::string &name, std::string &value) { if(current.size() > 2 && current.compare(0, 2, "--") == 0 && valid_first_char(current[2])) { auto loc = current.find_first_of('='); if(loc != std::string::npos) { name = current.substr(2, loc - 2); value = current.substr(loc + 1); } else { name = current.substr(2); value = ""; } return true; } return false; } CLI11_INLINE bool split_windows_style(const std::string ¤t, std::string &name, std::string &value) { if(current.size() > 1 && current[0] == '/' && valid_first_char(current[1])) { auto loc = current.find_first_of(':'); if(loc != std::string::npos) { name = current.substr(1, loc - 1); value = current.substr(loc + 1); } else { name = current.substr(1); value = ""; } return true; } return false; } CLI11_INLINE std::vector split_names(std::string current) { std::vector output; std::size_t val = 0; while((val = current.find(',')) != std::string::npos) { output.push_back(trim_copy(current.substr(0, val))); current = current.substr(val + 1); } output.push_back(trim_copy(current)); return output; } CLI11_INLINE std::vector> get_default_flag_values(const std::string &str) { std::vector flags = split_names(str); flags.erase(std::remove_if(flags.begin(), flags.end(), [](const std::string &name) { return ((name.empty()) || (!(((name.find_first_of('{') != std::string::npos) && (name.back() == '}')) || (name[0] == '!')))); }), flags.end()); std::vector> output; output.reserve(flags.size()); for(auto &flag : flags) { auto def_start = flag.find_first_of('{'); std::string defval = "false"; if((def_start != std::string::npos) && (flag.back() == '}')) { defval = flag.substr(def_start + 1); defval.pop_back(); flag.erase(def_start, std::string::npos); // NOLINT(readability-suspicious-call-argument) } flag.erase(0, flag.find_first_not_of("-!")); output.emplace_back(flag, defval); } return output; } CLI11_INLINE std::tuple, std::vector, std::string> get_names(const std::vector &input) { std::vector short_names; std::vector long_names; std::string pos_name; for(std::string name : input) { if(name.length() == 0) { continue; } if(name.length() > 1 && name[0] == '-' && name[1] != '-') { if(name.length() == 2 && valid_first_char(name[1])) short_names.emplace_back(1, name[1]); else if(name.length() > 2) throw BadNameString::MissingDash(name); else throw BadNameString::OneCharName(name); } else if(name.length() > 2 && name.substr(0, 2) == "--") { name = name.substr(2); if(valid_name_string(name)) long_names.push_back(name); else throw BadNameString::BadLongName(name); } else if(name == "-" || name == "--") { throw BadNameString::DashesOnly(name); } else { if(!pos_name.empty()) throw BadNameString::MultiPositionalNames(name); if(valid_name_string(name)) { pos_name = name; } else { throw BadNameString::BadPositionalName(name); } } } return std::make_tuple(short_names, long_names, pos_name); } } // namespace detail class App; /// Holds values to load into Options struct ConfigItem { /// This is the list of parents std::vector parents{}; /// This is the name std::string name{}; /// Listing of inputs std::vector inputs{}; /// The list of parents and name joined by "." CLI11_NODISCARD std::string fullname() const { std::vector tmp = parents; tmp.emplace_back(name); return detail::join(tmp, "."); } }; /// This class provides a converter for configuration files. class Config { protected: std::vector items{}; public: /// Convert an app into a configuration virtual std::string to_config(const App *, bool, bool, std::string) const = 0; /// Convert a configuration into an app virtual std::vector from_config(std::istream &) const = 0; /// Get a flag value CLI11_NODISCARD virtual std::string to_flag(const ConfigItem &item) const { if(item.inputs.size() == 1) { return item.inputs.at(0); } if(item.inputs.empty()) { return "{}"; } throw ConversionError::TooManyInputsFlag(item.fullname()); // LCOV_EXCL_LINE } /// Parse a config file, throw an error (ParseError:ConfigParseError or FileError) on failure CLI11_NODISCARD std::vector from_file(const std::string &name) const { std::ifstream input{name}; if(!input.good()) throw FileError::Missing(name); return from_config(input); } /// Virtual destructor virtual ~Config() = default; }; /// This converter works with INI/TOML files; to write INI files use ConfigINI class ConfigBase : public Config { protected: /// the character used for comments char commentChar = '#'; /// the character used to start an array '\0' is a default to not use char arrayStart = '['; /// the character used to end an array '\0' is a default to not use char arrayEnd = ']'; /// the character used to separate elements in an array char arraySeparator = ','; /// the character used separate the name from the value char valueDelimiter = '='; /// the character to use around strings char stringQuote = '"'; /// the character to use around single characters and literal strings char literalQuote = '\''; /// the maximum number of layers to allow uint8_t maximumLayers{255}; /// the separator used to separator parent layers char parentSeparatorChar{'.'}; /// Specify the configuration index to use for arrayed sections int16_t configIndex{-1}; /// Specify the configuration section that should be used std::string configSection{}; public: std::string to_config(const App * /*app*/, bool default_also, bool write_description, std::string prefix) const override; std::vector from_config(std::istream &input) const override; /// Specify the configuration for comment characters ConfigBase *comment(char cchar) { commentChar = cchar; return this; } /// Specify the start and end characters for an array ConfigBase *arrayBounds(char aStart, char aEnd) { arrayStart = aStart; arrayEnd = aEnd; return this; } /// Specify the delimiter character for an array ConfigBase *arrayDelimiter(char aSep) { arraySeparator = aSep; return this; } /// Specify the delimiter between a name and value ConfigBase *valueSeparator(char vSep) { valueDelimiter = vSep; return this; } /// Specify the quote characters used around strings and literal strings ConfigBase *quoteCharacter(char qString, char literalChar) { stringQuote = qString; literalQuote = literalChar; return this; } /// Specify the maximum number of parents ConfigBase *maxLayers(uint8_t layers) { maximumLayers = layers; return this; } /// Specify the separator to use for parent layers ConfigBase *parentSeparator(char sep) { parentSeparatorChar = sep; return this; } /// get a reference to the configuration section std::string §ionRef() { return configSection; } /// get the section CLI11_NODISCARD const std::string §ion() const { return configSection; } /// specify a particular section of the configuration file to use ConfigBase *section(const std::string §ionName) { configSection = sectionName; return this; } /// get a reference to the configuration index int16_t &indexRef() { return configIndex; } /// get the section index CLI11_NODISCARD int16_t index() const { return configIndex; } /// specify a particular index in the section to use (-1) for all sections to use ConfigBase *index(int16_t sectionIndex) { configIndex = sectionIndex; return this; } }; /// the default Config is the TOML file format using ConfigTOML = ConfigBase; /// ConfigINI generates a "standard" INI compliant output class ConfigINI : public ConfigTOML { public: ConfigINI() { commentChar = ';'; arrayStart = '\0'; arrayEnd = '\0'; arraySeparator = ' '; valueDelimiter = '='; } }; class Option; /// @defgroup validator_group Validators /// @brief Some validators that are provided /// /// These are simple `std::string(const std::string&)` validators that are useful. They return /// a string if the validation fails. A custom struct is provided, as well, with the same user /// semantics, but with the ability to provide a new type name. /// @{ /// class Validator { protected: /// This is the description function, if empty the description_ will be used std::function desc_function_{[]() { return std::string{}; }}; /// This is the base function that is to be called. /// Returns a string error message if validation fails. std::function func_{[](std::string &) { return std::string{}; }}; /// The name for search purposes of the Validator std::string name_{}; /// A Validator will only apply to an indexed value (-1 is all elements) int application_index_ = -1; /// Enable for Validator to allow it to be disabled if need be bool active_{true}; /// specify that a validator should not modify the input bool non_modifying_{false}; Validator(std::string validator_desc, std::function func) : desc_function_([validator_desc]() { return validator_desc; }), func_(std::move(func)) {} public: Validator() = default; /// Construct a Validator with just the description string explicit Validator(std::string validator_desc) : desc_function_([validator_desc]() { return validator_desc; }) {} /// Construct Validator from basic information Validator(std::function op, std::string validator_desc, std::string validator_name = "") : desc_function_([validator_desc]() { return validator_desc; }), func_(std::move(op)), name_(std::move(validator_name)) {} /// Set the Validator operation function Validator &operation(std::function op) { func_ = std::move(op); return *this; } /// This is the required operator for a Validator - provided to help /// users (CLI11 uses the member `func` directly) std::string operator()(std::string &str) const; /// This is the required operator for a Validator - provided to help /// users (CLI11 uses the member `func` directly) std::string operator()(const std::string &str) const { std::string value = str; return (active_) ? func_(value) : std::string{}; } /// Specify the type string Validator &description(std::string validator_desc) { desc_function_ = [validator_desc]() { return validator_desc; }; return *this; } /// Specify the type string CLI11_NODISCARD Validator description(std::string validator_desc) const; /// Generate type description information for the Validator CLI11_NODISCARD std::string get_description() const { if(active_) { return desc_function_(); } return std::string{}; } /// Specify the type string Validator &name(std::string validator_name) { name_ = std::move(validator_name); return *this; } /// Specify the type string CLI11_NODISCARD Validator name(std::string validator_name) const { Validator newval(*this); newval.name_ = std::move(validator_name); return newval; } /// Get the name of the Validator CLI11_NODISCARD const std::string &get_name() const { return name_; } /// Specify whether the Validator is active or not Validator &active(bool active_val = true) { active_ = active_val; return *this; } /// Specify whether the Validator is active or not CLI11_NODISCARD Validator active(bool active_val = true) const { Validator newval(*this); newval.active_ = active_val; return newval; } /// Specify whether the Validator can be modifying or not Validator &non_modifying(bool no_modify = true) { non_modifying_ = no_modify; return *this; } /// Specify the application index of a validator Validator &application_index(int app_index) { application_index_ = app_index; return *this; } /// Specify the application index of a validator CLI11_NODISCARD Validator application_index(int app_index) const { Validator newval(*this); newval.application_index_ = app_index; return newval; } /// Get the current value of the application index CLI11_NODISCARD int get_application_index() const { return application_index_; } /// Get a boolean if the validator is active CLI11_NODISCARD bool get_active() const { return active_; } /// Get a boolean if the validator is allowed to modify the input returns true if it can modify the input CLI11_NODISCARD bool get_modifying() const { return !non_modifying_; } /// Combining validators is a new validator. Type comes from left validator if function, otherwise only set if the /// same. Validator operator&(const Validator &other) const; /// Combining validators is a new validator. Type comes from left validator if function, otherwise only set if the /// same. Validator operator|(const Validator &other) const; /// Create a validator that fails when a given validator succeeds Validator operator!() const; private: void _merge_description(const Validator &val1, const Validator &val2, const std::string &merger); }; /// Class wrapping some of the accessors of Validator class CustomValidator : public Validator { public: }; // The implementation of the built in validators is using the Validator class; // the user is only expected to use the const (static) versions (since there's no setup). // Therefore, this is in detail. namespace detail { /// CLI enumeration of different file types enum class path_type { nonexistent, file, directory }; /// get the type of the path from a file name CLI11_INLINE path_type check_path(const char *file) noexcept; /// Check for an existing file (returns error message if check fails) class ExistingFileValidator : public Validator { public: ExistingFileValidator(); }; /// Check for an existing directory (returns error message if check fails) class ExistingDirectoryValidator : public Validator { public: ExistingDirectoryValidator(); }; /// Check for an existing path class ExistingPathValidator : public Validator { public: ExistingPathValidator(); }; /// Check for an non-existing path class NonexistentPathValidator : public Validator { public: NonexistentPathValidator(); }; /// Validate the given string is a legal ipv4 address class IPV4Validator : public Validator { public: IPV4Validator(); }; class EscapedStringTransformer : public Validator { public: EscapedStringTransformer(); }; } // namespace detail // Static is not needed here, because global const implies static. /// Check for existing file (returns error message if check fails) const detail::ExistingFileValidator ExistingFile; /// Check for an existing directory (returns error message if check fails) const detail::ExistingDirectoryValidator ExistingDirectory; /// Check for an existing path const detail::ExistingPathValidator ExistingPath; /// Check for an non-existing path const detail::NonexistentPathValidator NonexistentPath; /// Check for an IP4 address const detail::IPV4Validator ValidIPV4; /// convert escaped characters into their associated values const detail::EscapedStringTransformer EscapedString; /// Validate the input as a particular type template class TypeValidator : public Validator { public: explicit TypeValidator(const std::string &validator_name) : Validator(validator_name, [](std::string &input_string) { using CLI::detail::lexical_cast; auto val = DesiredType(); if(!lexical_cast(input_string, val)) { return std::string("Failed parsing ") + input_string + " as a " + detail::type_name(); } return std::string(); }) {} TypeValidator() : TypeValidator(detail::type_name()) {} }; /// Check for a number const TypeValidator Number("NUMBER"); /// Modify a path if the file is a particular default location, can be used as Check or transform /// with the error return optionally disabled class FileOnDefaultPath : public Validator { public: explicit FileOnDefaultPath(std::string default_path, bool enableErrorReturn = true); }; /// Produce a range (factory). Min and max are inclusive. class Range : public Validator { public: /// This produces a range with min and max inclusive. /// /// Note that the constructor is templated, but the struct is not, so C++17 is not /// needed to provide nice syntax for Range(a,b). template Range(T min_val, T max_val, const std::string &validator_name = std::string{}) : Validator(validator_name) { if(validator_name.empty()) { std::stringstream out; out << detail::type_name() << " in [" << min_val << " - " << max_val << "]"; description(out.str()); } func_ = [min_val, max_val](std::string &input) { using CLI::detail::lexical_cast; T val; bool converted = lexical_cast(input, val); if((!converted) || (val < min_val || val > max_val)) { std::stringstream out; out << "Value " << input << " not in range ["; out << min_val << " - " << max_val << "]"; return out.str(); } return std::string{}; }; } /// Range of one value is 0 to value template explicit Range(T max_val, const std::string &validator_name = std::string{}) : Range(static_cast(0), max_val, validator_name) {} }; /// Check for a non negative number const Range NonNegativeNumber((std::numeric_limits::max)(), "NONNEGATIVE"); /// Check for a positive valued number (val>0.0), ::min here is the smallest positive number const Range PositiveNumber((std::numeric_limits::min)(), (std::numeric_limits::max)(), "POSITIVE"); /// Produce a bounded range (factory). Min and max are inclusive. class Bound : public Validator { public: /// This bounds a value with min and max inclusive. /// /// Note that the constructor is templated, but the struct is not, so C++17 is not /// needed to provide nice syntax for Range(a,b). template Bound(T min_val, T max_val) { std::stringstream out; out << detail::type_name() << " bounded to [" << min_val << " - " << max_val << "]"; description(out.str()); func_ = [min_val, max_val](std::string &input) { using CLI::detail::lexical_cast; T val; bool converted = lexical_cast(input, val); if(!converted) { return std::string("Value ") + input + " could not be converted"; } if(val < min_val) input = detail::to_string(min_val); else if(val > max_val) input = detail::to_string(max_val); return std::string{}; }; } /// Range of one value is 0 to value template explicit Bound(T max_val) : Bound(static_cast(0), max_val) {} }; namespace detail { template ::type>::value, detail::enabler> = detail::dummy> auto smart_deref(T value) -> decltype(*value) { return *value; } template < typename T, enable_if_t::type>::value, detail::enabler> = detail::dummy> typename std::remove_reference::type &smart_deref(T &value) { return value; } /// Generate a string representation of a set template std::string generate_set(const T &set) { using element_t = typename detail::element_type::type; using iteration_type_t = typename detail::pair_adaptor::value_type; // the type of the object pair std::string out(1, '{'); out.append(detail::join( detail::smart_deref(set), [](const iteration_type_t &v) { return detail::pair_adaptor::first(v); }, ",")); out.push_back('}'); return out; } /// Generate a string representation of a map template std::string generate_map(const T &map, bool key_only = false) { using element_t = typename detail::element_type::type; using iteration_type_t = typename detail::pair_adaptor::value_type; // the type of the object pair std::string out(1, '{'); out.append(detail::join( detail::smart_deref(map), [key_only](const iteration_type_t &v) { std::string res{detail::to_string(detail::pair_adaptor::first(v))}; if(!key_only) { res.append("->"); res += detail::to_string(detail::pair_adaptor::second(v)); } return res; }, ",")); out.push_back('}'); return out; } template struct has_find { template static auto test(int) -> decltype(std::declval().find(std::declval()), std::true_type()); template static auto test(...) -> decltype(std::false_type()); static const auto value = decltype(test(0))::value; using type = std::integral_constant; }; /// A search function template ::value, detail::enabler> = detail::dummy> auto search(const T &set, const V &val) -> std::pair { using element_t = typename detail::element_type::type; auto &setref = detail::smart_deref(set); auto it = std::find_if(std::begin(setref), std::end(setref), [&val](decltype(*std::begin(setref)) v) { return (detail::pair_adaptor::first(v) == val); }); return {(it != std::end(setref)), it}; } /// A search function that uses the built in find function template ::value, detail::enabler> = detail::dummy> auto search(const T &set, const V &val) -> std::pair { auto &setref = detail::smart_deref(set); auto it = setref.find(val); return {(it != std::end(setref)), it}; } /// A search function with a filter function template auto search(const T &set, const V &val, const std::function &filter_function) -> std::pair { using element_t = typename detail::element_type::type; // do the potentially faster first search auto res = search(set, val); if((res.first) || (!(filter_function))) { return res; } // if we haven't found it do the longer linear search with all the element translations auto &setref = detail::smart_deref(set); auto it = std::find_if(std::begin(setref), std::end(setref), [&](decltype(*std::begin(setref)) v) { V a{detail::pair_adaptor::first(v)}; a = filter_function(a); return (a == val); }); return {(it != std::end(setref)), it}; } // the following suggestion was made by Nikita Ofitserov(@himikof) // done in templates to prevent compiler warnings on negation of unsigned numbers /// Do a check for overflow on signed numbers template inline typename std::enable_if::value, T>::type overflowCheck(const T &a, const T &b) { if((a > 0) == (b > 0)) { return ((std::numeric_limits::max)() / (std::abs)(a) < (std::abs)(b)); } return ((std::numeric_limits::min)() / (std::abs)(a) > -(std::abs)(b)); } /// Do a check for overflow on unsigned numbers template inline typename std::enable_if::value, T>::type overflowCheck(const T &a, const T &b) { return ((std::numeric_limits::max)() / a < b); } /// Performs a *= b; if it doesn't cause integer overflow. Returns false otherwise. template typename std::enable_if::value, bool>::type checked_multiply(T &a, T b) { if(a == 0 || b == 0 || a == 1 || b == 1) { a *= b; return true; } if(a == (std::numeric_limits::min)() || b == (std::numeric_limits::min)()) { return false; } if(overflowCheck(a, b)) { return false; } a *= b; return true; } /// Performs a *= b; if it doesn't equal infinity. Returns false otherwise. template typename std::enable_if::value, bool>::type checked_multiply(T &a, T b) { T c = a * b; if(std::isinf(c) && !std::isinf(a) && !std::isinf(b)) { return false; } a = c; return true; } } // namespace detail /// Verify items are in a set class IsMember : public Validator { public: using filter_fn_t = std::function; /// This allows in-place construction using an initializer list template IsMember(std::initializer_list values, Args &&...args) : IsMember(std::vector(values), std::forward(args)...) {} /// This checks to see if an item is in a set (empty function) template explicit IsMember(T &&set) : IsMember(std::forward(set), nullptr) {} /// This checks to see if an item is in a set: pointer or copy version. You can pass in a function that will filter /// both sides of the comparison before computing the comparison. template explicit IsMember(T set, F filter_function) { // Get the type of the contained item - requires a container have ::value_type // if the type does not have first_type and second_type, these are both value_type using element_t = typename detail::element_type::type; // Removes (smart) pointers if needed using item_t = typename detail::pair_adaptor::first_type; // Is value_type if not a map using local_item_t = typename IsMemberType::type; // This will convert bad types to good ones // (const char * to std::string) // Make a local copy of the filter function, using a std::function if not one already std::function filter_fn = filter_function; // This is the type name for help, it will take the current version of the set contents desc_function_ = [set]() { return detail::generate_set(detail::smart_deref(set)); }; // This is the function that validates // It stores a copy of the set pointer-like, so shared_ptr will stay alive func_ = [set, filter_fn](std::string &input) { using CLI::detail::lexical_cast; local_item_t b; if(!lexical_cast(input, b)) { throw ValidationError(input); // name is added later } if(filter_fn) { b = filter_fn(b); } auto res = detail::search(set, b, filter_fn); if(res.first) { // Make sure the version in the input string is identical to the one in the set if(filter_fn) { input = detail::value_string(detail::pair_adaptor::first(*(res.second))); } // Return empty error string (success) return std::string{}; } // If you reach this point, the result was not found return input + " not in " + detail::generate_set(detail::smart_deref(set)); }; } /// You can pass in as many filter functions as you like, they nest (string only currently) template IsMember(T &&set, filter_fn_t filter_fn_1, filter_fn_t filter_fn_2, Args &&...other) : IsMember( std::forward(set), [filter_fn_1, filter_fn_2](std::string a) { return filter_fn_2(filter_fn_1(a)); }, other...) {} }; /// definition of the default transformation object template using TransformPairs = std::vector>; /// Translate named items to other or a value set class Transformer : public Validator { public: using filter_fn_t = std::function; /// This allows in-place construction template Transformer(std::initializer_list> values, Args &&...args) : Transformer(TransformPairs(values), std::forward(args)...) {} /// direct map of std::string to std::string template explicit Transformer(T &&mapping) : Transformer(std::forward(mapping), nullptr) {} /// This checks to see if an item is in a set: pointer or copy version. You can pass in a function that will filter /// both sides of the comparison before computing the comparison. template explicit Transformer(T mapping, F filter_function) { static_assert(detail::pair_adaptor::type>::value, "mapping must produce value pairs"); // Get the type of the contained item - requires a container have ::value_type // if the type does not have first_type and second_type, these are both value_type using element_t = typename detail::element_type::type; // Removes (smart) pointers if needed using item_t = typename detail::pair_adaptor::first_type; // Is value_type if not a map using local_item_t = typename IsMemberType::type; // Will convert bad types to good ones // (const char * to std::string) // Make a local copy of the filter function, using a std::function if not one already std::function filter_fn = filter_function; // This is the type name for help, it will take the current version of the set contents desc_function_ = [mapping]() { return detail::generate_map(detail::smart_deref(mapping)); }; func_ = [mapping, filter_fn](std::string &input) { using CLI::detail::lexical_cast; local_item_t b; if(!lexical_cast(input, b)) { return std::string(); // there is no possible way we can match anything in the mapping if we can't convert so just return } if(filter_fn) { b = filter_fn(b); } auto res = detail::search(mapping, b, filter_fn); if(res.first) { input = detail::value_string(detail::pair_adaptor::second(*res.second)); } return std::string{}; }; } /// You can pass in as many filter functions as you like, they nest template Transformer(T &&mapping, filter_fn_t filter_fn_1, filter_fn_t filter_fn_2, Args &&...other) : Transformer( std::forward(mapping), [filter_fn_1, filter_fn_2](std::string a) { return filter_fn_2(filter_fn_1(a)); }, other...) {} }; /// translate named items to other or a value set class CheckedTransformer : public Validator { public: using filter_fn_t = std::function; /// This allows in-place construction template CheckedTransformer(std::initializer_list> values, Args &&...args) : CheckedTransformer(TransformPairs(values), std::forward(args)...) {} /// direct map of std::string to std::string template explicit CheckedTransformer(T mapping) : CheckedTransformer(std::move(mapping), nullptr) {} /// This checks to see if an item is in a set: pointer or copy version. You can pass in a function that will filter /// both sides of the comparison before computing the comparison. template explicit CheckedTransformer(T mapping, F filter_function) { static_assert(detail::pair_adaptor::type>::value, "mapping must produce value pairs"); // Get the type of the contained item - requires a container have ::value_type // if the type does not have first_type and second_type, these are both value_type using element_t = typename detail::element_type::type; // Removes (smart) pointers if needed using item_t = typename detail::pair_adaptor::first_type; // Is value_type if not a map using local_item_t = typename IsMemberType::type; // Will convert bad types to good ones // (const char * to std::string) using iteration_type_t = typename detail::pair_adaptor::value_type; // the type of the object pair // Make a local copy of the filter function, using a std::function if not one already std::function filter_fn = filter_function; auto tfunc = [mapping]() { std::string out("value in "); out += detail::generate_map(detail::smart_deref(mapping)) + " OR {"; out += detail::join( detail::smart_deref(mapping), [](const iteration_type_t &v) { return detail::to_string(detail::pair_adaptor::second(v)); }, ","); out.push_back('}'); return out; }; desc_function_ = tfunc; func_ = [mapping, tfunc, filter_fn](std::string &input) { using CLI::detail::lexical_cast; local_item_t b; bool converted = lexical_cast(input, b); if(converted) { if(filter_fn) { b = filter_fn(b); } auto res = detail::search(mapping, b, filter_fn); if(res.first) { input = detail::value_string(detail::pair_adaptor::second(*res.second)); return std::string{}; } } for(const auto &v : detail::smart_deref(mapping)) { auto output_string = detail::value_string(detail::pair_adaptor::second(v)); if(output_string == input) { return std::string(); } } return "Check " + input + " " + tfunc() + " FAILED"; }; } /// You can pass in as many filter functions as you like, they nest template CheckedTransformer(T &&mapping, filter_fn_t filter_fn_1, filter_fn_t filter_fn_2, Args &&...other) : CheckedTransformer( std::forward(mapping), [filter_fn_1, filter_fn_2](std::string a) { return filter_fn_2(filter_fn_1(a)); }, other...) {} }; /// Helper function to allow ignore_case to be passed to IsMember or Transform inline std::string ignore_case(std::string item) { return detail::to_lower(item); } /// Helper function to allow ignore_underscore to be passed to IsMember or Transform inline std::string ignore_underscore(std::string item) { return detail::remove_underscore(item); } /// Helper function to allow checks to ignore spaces to be passed to IsMember or Transform inline std::string ignore_space(std::string item) { item.erase(std::remove(std::begin(item), std::end(item), ' '), std::end(item)); item.erase(std::remove(std::begin(item), std::end(item), '\t'), std::end(item)); return item; } /// Multiply a number by a factor using given mapping. /// Can be used to write transforms for SIZE or DURATION inputs. /// /// Example: /// With mapping = `{"b"->1, "kb"->1024, "mb"->1024*1024}` /// one can recognize inputs like "100", "12kb", "100 MB", /// that will be automatically transformed to 100, 14448, 104857600. /// /// Output number type matches the type in the provided mapping. /// Therefore, if it is required to interpret real inputs like "0.42 s", /// the mapping should be of a type or . class AsNumberWithUnit : public Validator { public: /// Adjust AsNumberWithUnit behavior. /// CASE_SENSITIVE/CASE_INSENSITIVE controls how units are matched. /// UNIT_OPTIONAL/UNIT_REQUIRED throws ValidationError /// if UNIT_REQUIRED is set and unit literal is not found. enum Options { CASE_SENSITIVE = 0, CASE_INSENSITIVE = 1, UNIT_OPTIONAL = 0, UNIT_REQUIRED = 2, DEFAULT = CASE_INSENSITIVE | UNIT_OPTIONAL }; template explicit AsNumberWithUnit(std::map mapping, Options opts = DEFAULT, const std::string &unit_name = "UNIT") { description(generate_description(unit_name, opts)); validate_mapping(mapping, opts); // transform function func_ = [mapping, opts](std::string &input) -> std::string { Number num{}; detail::rtrim(input); if(input.empty()) { throw ValidationError("Input is empty"); } // Find split position between number and prefix auto unit_begin = input.end(); while(unit_begin > input.begin() && std::isalpha(*(unit_begin - 1), std::locale())) { --unit_begin; } std::string unit{unit_begin, input.end()}; input.resize(static_cast(std::distance(input.begin(), unit_begin))); detail::trim(input); if(opts & UNIT_REQUIRED && unit.empty()) { throw ValidationError("Missing mandatory unit"); } if(opts & CASE_INSENSITIVE) { unit = detail::to_lower(unit); } if(unit.empty()) { using CLI::detail::lexical_cast; if(!lexical_cast(input, num)) { throw ValidationError(std::string("Value ") + input + " could not be converted to " + detail::type_name()); } // No need to modify input if no unit passed return {}; } // find corresponding factor auto it = mapping.find(unit); if(it == mapping.end()) { throw ValidationError(unit + " unit not recognized. " "Allowed values: " + detail::generate_map(mapping, true)); } if(!input.empty()) { using CLI::detail::lexical_cast; bool converted = lexical_cast(input, num); if(!converted) { throw ValidationError(std::string("Value ") + input + " could not be converted to " + detail::type_name()); } // perform safe multiplication bool ok = detail::checked_multiply(num, it->second); if(!ok) { throw ValidationError(detail::to_string(num) + " multiplied by " + unit + " factor would cause number overflow. Use smaller value."); } } else { num = static_cast(it->second); } input = detail::to_string(num); return {}; }; } private: /// Check that mapping contains valid units. /// Update mapping for CASE_INSENSITIVE mode. template static void validate_mapping(std::map &mapping, Options opts) { for(auto &kv : mapping) { if(kv.first.empty()) { throw ValidationError("Unit must not be empty."); } if(!detail::isalpha(kv.first)) { throw ValidationError("Unit must contain only letters."); } } // make all units lowercase if CASE_INSENSITIVE if(opts & CASE_INSENSITIVE) { std::map lower_mapping; for(auto &kv : mapping) { auto s = detail::to_lower(kv.first); if(lower_mapping.count(s)) { throw ValidationError(std::string("Several matching lowercase unit representations are found: ") + s); } lower_mapping[detail::to_lower(kv.first)] = kv.second; } mapping = std::move(lower_mapping); } } /// Generate description like this: NUMBER [UNIT] template static std::string generate_description(const std::string &name, Options opts) { std::stringstream out; out << detail::type_name() << ' '; if(opts & UNIT_REQUIRED) { out << name; } else { out << '[' << name << ']'; } return out.str(); } }; inline AsNumberWithUnit::Options operator|(const AsNumberWithUnit::Options &a, const AsNumberWithUnit::Options &b) { return static_cast(static_cast(a) | static_cast(b)); } /// Converts a human-readable size string (with unit literal) to uin64_t size. /// Example: /// "100" => 100 /// "1 b" => 100 /// "10Kb" => 10240 // you can configure this to be interpreted as kilobyte (*1000) or kibibyte (*1024) /// "10 KB" => 10240 /// "10 kb" => 10240 /// "10 kib" => 10240 // *i, *ib are always interpreted as *bibyte (*1024) /// "10kb" => 10240 /// "2 MB" => 2097152 /// "2 EiB" => 2^61 // Units up to exibyte are supported class AsSizeValue : public AsNumberWithUnit { public: using result_t = std::uint64_t; /// If kb_is_1000 is true, /// interpret 'kb', 'k' as 1000 and 'kib', 'ki' as 1024 /// (same applies to higher order units as well). /// Otherwise, interpret all literals as factors of 1024. /// The first option is formally correct, but /// the second interpretation is more wide-spread /// (see https://en.wikipedia.org/wiki/Binary_prefix). explicit AsSizeValue(bool kb_is_1000); private: /// Get mapping static std::map init_mapping(bool kb_is_1000); /// Cache calculated mapping static std::map get_mapping(bool kb_is_1000); }; namespace detail { /// Split a string into a program name and command line arguments /// the string is assumed to contain a file name followed by other arguments /// the return value contains is a pair with the first argument containing the program name and the second /// everything else. CLI11_INLINE std::pair split_program_name(std::string commandline); } // namespace detail /// @} CLI11_INLINE std::string Validator::operator()(std::string &str) const { std::string retstring; if(active_) { if(non_modifying_) { std::string value = str; retstring = func_(value); } else { retstring = func_(str); } } return retstring; } CLI11_NODISCARD CLI11_INLINE Validator Validator::description(std::string validator_desc) const { Validator newval(*this); newval.desc_function_ = [validator_desc]() { return validator_desc; }; return newval; } CLI11_INLINE Validator Validator::operator&(const Validator &other) const { Validator newval; newval._merge_description(*this, other, " AND "); // Give references (will make a copy in lambda function) const std::function &f1 = func_; const std::function &f2 = other.func_; newval.func_ = [f1, f2](std::string &input) { std::string s1 = f1(input); std::string s2 = f2(input); if(!s1.empty() && !s2.empty()) return std::string("(") + s1 + ") AND (" + s2 + ")"; return s1 + s2; }; newval.active_ = active_ && other.active_; newval.application_index_ = application_index_; return newval; } CLI11_INLINE Validator Validator::operator|(const Validator &other) const { Validator newval; newval._merge_description(*this, other, " OR "); // Give references (will make a copy in lambda function) const std::function &f1 = func_; const std::function &f2 = other.func_; newval.func_ = [f1, f2](std::string &input) { std::string s1 = f1(input); std::string s2 = f2(input); if(s1.empty() || s2.empty()) return std::string(); return std::string("(") + s1 + ") OR (" + s2 + ")"; }; newval.active_ = active_ && other.active_; newval.application_index_ = application_index_; return newval; } CLI11_INLINE Validator Validator::operator!() const { Validator newval; const std::function &dfunc1 = desc_function_; newval.desc_function_ = [dfunc1]() { auto str = dfunc1(); return (!str.empty()) ? std::string("NOT ") + str : std::string{}; }; // Give references (will make a copy in lambda function) const std::function &f1 = func_; newval.func_ = [f1, dfunc1](std::string &test) -> std::string { std::string s1 = f1(test); if(s1.empty()) { return std::string("check ") + dfunc1() + " succeeded improperly"; } return std::string{}; }; newval.active_ = active_; newval.application_index_ = application_index_; return newval; } CLI11_INLINE void Validator::_merge_description(const Validator &val1, const Validator &val2, const std::string &merger) { const std::function &dfunc1 = val1.desc_function_; const std::function &dfunc2 = val2.desc_function_; desc_function_ = [=]() { std::string f1 = dfunc1(); std::string f2 = dfunc2(); if((f1.empty()) || (f2.empty())) { return f1 + f2; } return std::string(1, '(') + f1 + ')' + merger + '(' + f2 + ')'; }; } namespace detail { #if defined CLI11_HAS_FILESYSTEM && CLI11_HAS_FILESYSTEM > 0 CLI11_INLINE path_type check_path(const char *file) noexcept { std::error_code ec; auto stat = std::filesystem::status(to_path(file), ec); if(ec) { return path_type::nonexistent; } switch(stat.type()) { case std::filesystem::file_type::none: // LCOV_EXCL_LINE case std::filesystem::file_type::not_found: return path_type::nonexistent; // LCOV_EXCL_LINE case std::filesystem::file_type::directory: return path_type::directory; case std::filesystem::file_type::symlink: case std::filesystem::file_type::block: case std::filesystem::file_type::character: case std::filesystem::file_type::fifo: case std::filesystem::file_type::socket: case std::filesystem::file_type::regular: case std::filesystem::file_type::unknown: default: return path_type::file; } } #else CLI11_INLINE path_type check_path(const char *file) noexcept { #if defined(_MSC_VER) struct __stat64 buffer; if(_stat64(file, &buffer) == 0) { return ((buffer.st_mode & S_IFDIR) != 0) ? path_type::directory : path_type::file; } #else struct stat buffer; if(stat(file, &buffer) == 0) { return ((buffer.st_mode & S_IFDIR) != 0) ? path_type::directory : path_type::file; } #endif return path_type::nonexistent; } #endif CLI11_INLINE ExistingFileValidator::ExistingFileValidator() : Validator("FILE") { func_ = [](std::string &filename) { auto path_result = check_path(filename.c_str()); if(path_result == path_type::nonexistent) { return "File does not exist: " + filename; } if(path_result == path_type::directory) { return "File is actually a directory: " + filename; } return std::string(); }; } CLI11_INLINE ExistingDirectoryValidator::ExistingDirectoryValidator() : Validator("DIR") { func_ = [](std::string &filename) { auto path_result = check_path(filename.c_str()); if(path_result == path_type::nonexistent) { return "Directory does not exist: " + filename; } if(path_result == path_type::file) { return "Directory is actually a file: " + filename; } return std::string(); }; } CLI11_INLINE ExistingPathValidator::ExistingPathValidator() : Validator("PATH(existing)") { func_ = [](std::string &filename) { auto path_result = check_path(filename.c_str()); if(path_result == path_type::nonexistent) { return "Path does not exist: " + filename; } return std::string(); }; } CLI11_INLINE NonexistentPathValidator::NonexistentPathValidator() : Validator("PATH(non-existing)") { func_ = [](std::string &filename) { auto path_result = check_path(filename.c_str()); if(path_result != path_type::nonexistent) { return "Path already exists: " + filename; } return std::string(); }; } CLI11_INLINE IPV4Validator::IPV4Validator() : Validator("IPV4") { func_ = [](std::string &ip_addr) { auto result = CLI::detail::split(ip_addr, '.'); if(result.size() != 4) { return std::string("Invalid IPV4 address must have four parts (") + ip_addr + ')'; } int num = 0; for(const auto &var : result) { using CLI::detail::lexical_cast; bool retval = lexical_cast(var, num); if(!retval) { return std::string("Failed parsing number (") + var + ')'; } if(num < 0 || num > 255) { return std::string("Each IP number must be between 0 and 255 ") + var; } } return std::string{}; }; } CLI11_INLINE EscapedStringTransformer::EscapedStringTransformer() { func_ = [](std::string &str) { try { if(str.size() > 1 && (str.front() == '\"' || str.front() == '\'' || str.front() == '`') && str.front() == str.back()) { process_quoted_string(str); } else if(str.find_first_of('\\') != std::string::npos) { if(detail::is_binary_escaped_string(str)) { str = detail::extract_binary_string(str); } else { str = remove_escaped_characters(str); } } return std::string{}; } catch(const std::invalid_argument &ia) { return std::string(ia.what()); } }; } } // namespace detail CLI11_INLINE FileOnDefaultPath::FileOnDefaultPath(std::string default_path, bool enableErrorReturn) : Validator("FILE") { func_ = [default_path, enableErrorReturn](std::string &filename) { auto path_result = detail::check_path(filename.c_str()); if(path_result == detail::path_type::nonexistent) { std::string test_file_path = default_path; if(default_path.back() != '/' && default_path.back() != '\\') { // Add folder separator test_file_path += '/'; } test_file_path.append(filename); path_result = detail::check_path(test_file_path.c_str()); if(path_result == detail::path_type::file) { filename = test_file_path; } else { if(enableErrorReturn) { return "File does not exist: " + filename; } } } return std::string{}; }; } CLI11_INLINE AsSizeValue::AsSizeValue(bool kb_is_1000) : AsNumberWithUnit(get_mapping(kb_is_1000)) { if(kb_is_1000) { description("SIZE [b, kb(=1000b), kib(=1024b), ...]"); } else { description("SIZE [b, kb(=1024b), ...]"); } } CLI11_INLINE std::map AsSizeValue::init_mapping(bool kb_is_1000) { std::map m; result_t k_factor = kb_is_1000 ? 1000 : 1024; result_t ki_factor = 1024; result_t k = 1; result_t ki = 1; m["b"] = 1; for(std::string p : {"k", "m", "g", "t", "p", "e"}) { k *= k_factor; ki *= ki_factor; m[p] = k; m[p + "b"] = k; m[p + "i"] = ki; m[p + "ib"] = ki; } return m; } CLI11_INLINE std::map AsSizeValue::get_mapping(bool kb_is_1000) { if(kb_is_1000) { static auto m = init_mapping(true); return m; } static auto m = init_mapping(false); return m; } namespace detail { CLI11_INLINE std::pair split_program_name(std::string commandline) { // try to determine the programName std::pair vals; trim(commandline); auto esp = commandline.find_first_of(' ', 1); while(detail::check_path(commandline.substr(0, esp).c_str()) != path_type::file) { esp = commandline.find_first_of(' ', esp + 1); if(esp == std::string::npos) { // if we have reached the end and haven't found a valid file just assume the first argument is the // program name if(commandline[0] == '"' || commandline[0] == '\'' || commandline[0] == '`') { bool embeddedQuote = false; auto keyChar = commandline[0]; auto end = commandline.find_first_of(keyChar, 1); while((end != std::string::npos) && (commandline[end - 1] == '\\')) { // deal with escaped quotes end = commandline.find_first_of(keyChar, end + 1); embeddedQuote = true; } if(end != std::string::npos) { vals.first = commandline.substr(1, end - 1); esp = end + 1; if(embeddedQuote) { vals.first = find_and_replace(vals.first, std::string("\\") + keyChar, std::string(1, keyChar)); } } else { esp = commandline.find_first_of(' ', 1); } } else { esp = commandline.find_first_of(' ', 1); } break; } } if(vals.first.empty()) { vals.first = commandline.substr(0, esp); rtrim(vals.first); } // strip the program name vals.second = (esp < commandline.length() - 1) ? commandline.substr(esp + 1) : std::string{}; ltrim(vals.second); return vals; } } // namespace detail /// @} class Option; class App; /// This enum signifies the type of help requested /// /// This is passed in by App; all user classes must accept this as /// the second argument. enum class AppFormatMode { Normal, ///< The normal, detailed help All, ///< A fully expanded help Sub, ///< Used when printed as part of expanded subcommand }; /// This is the minimum requirements to run a formatter. /// /// A user can subclass this is if they do not care at all /// about the structure in CLI::Formatter. class FormatterBase { protected: /// @name Options ///@{ /// The width of the first column std::size_t column_width_{30}; /// @brief The required help printout labels (user changeable) /// Values are Needs, Excludes, etc. std::map labels_{}; ///@} /// @name Basic ///@{ public: FormatterBase() = default; FormatterBase(const FormatterBase &) = default; FormatterBase(FormatterBase &&) = default; FormatterBase &operator=(const FormatterBase &) = default; FormatterBase &operator=(FormatterBase &&) = default; /// Adding a destructor in this form to work around bug in GCC 4.7 virtual ~FormatterBase() noexcept {} // NOLINT(modernize-use-equals-default) /// This is the key method that puts together help virtual std::string make_help(const App *, std::string, AppFormatMode) const = 0; ///@} /// @name Setters ///@{ /// Set the "REQUIRED" label void label(std::string key, std::string val) { labels_[key] = val; } /// Set the column width void column_width(std::size_t val) { column_width_ = val; } ///@} /// @name Getters ///@{ /// Get the current value of a name (REQUIRED, etc.) CLI11_NODISCARD std::string get_label(std::string key) const { if(labels_.find(key) == labels_.end()) return key; return labels_.at(key); } /// Get the current column width CLI11_NODISCARD std::size_t get_column_width() const { return column_width_; } ///@} }; /// This is a specialty override for lambda functions class FormatterLambda final : public FormatterBase { using funct_t = std::function; /// The lambda to hold and run funct_t lambda_; public: /// Create a FormatterLambda with a lambda function explicit FormatterLambda(funct_t funct) : lambda_(std::move(funct)) {} /// Adding a destructor (mostly to make GCC 4.7 happy) ~FormatterLambda() noexcept override {} // NOLINT(modernize-use-equals-default) /// This will simply call the lambda function std::string make_help(const App *app, std::string name, AppFormatMode mode) const override { return lambda_(app, name, mode); } }; /// This is the default Formatter for CLI11. It pretty prints help output, and is broken into quite a few /// overridable methods, to be highly customizable with minimal effort. class Formatter : public FormatterBase { public: Formatter() = default; Formatter(const Formatter &) = default; Formatter(Formatter &&) = default; Formatter &operator=(const Formatter &) = default; Formatter &operator=(Formatter &&) = default; /// @name Overridables ///@{ /// This prints out a group of options with title /// CLI11_NODISCARD virtual std::string make_group(std::string group, bool is_positional, std::vector opts) const; /// This prints out just the positionals "group" virtual std::string make_positionals(const App *app) const; /// This prints out all the groups of options std::string make_groups(const App *app, AppFormatMode mode) const; /// This prints out all the subcommands virtual std::string make_subcommands(const App *app, AppFormatMode mode) const; /// This prints out a subcommand virtual std::string make_subcommand(const App *sub) const; /// This prints out a subcommand in help-all virtual std::string make_expanded(const App *sub) const; /// This prints out all the groups of options virtual std::string make_footer(const App *app) const; /// This displays the description line virtual std::string make_description(const App *app) const; /// This displays the usage line virtual std::string make_usage(const App *app, std::string name) const; /// This puts everything together std::string make_help(const App * /*app*/, std::string, AppFormatMode) const override; ///@} /// @name Options ///@{ /// This prints out an option help line, either positional or optional form virtual std::string make_option(const Option *opt, bool is_positional) const { std::stringstream out; detail::format_help( out, make_option_name(opt, is_positional) + make_option_opts(opt), make_option_desc(opt), column_width_); return out.str(); } /// @brief This is the name part of an option, Default: left column virtual std::string make_option_name(const Option *, bool) const; /// @brief This is the options part of the name, Default: combined into left column virtual std::string make_option_opts(const Option *) const; /// @brief This is the description. Default: Right column, on new line if left column too large virtual std::string make_option_desc(const Option *) const; /// @brief This is used to print the name on the USAGE line virtual std::string make_option_usage(const Option *opt) const; ///@} }; using results_t = std::vector; /// callback function definition using callback_t = std::function; class Option; class App; using Option_p = std::unique_ptr